Publication Cover
Materials Technology
Advanced Performance Materials
Volume 37, 2022 - Issue 13
127
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Optimized consolidation process at a near-room temperature of nano-hydroxyapatite and sodium silicate glass composites for bone healing applications

ORCID Icon, , ORCID Icon, ORCID Icon, , ORCID Icon & show all
Pages 2623-2636 | Received 17 Sep 2021, Accepted 09 Mar 2022, Published online: 29 Mar 2022

References

  • Drouet C, Rey C. Nanostructured calcium phosphates for hard tissue engineering and nanomedicine. In: Nanostructured biomaterials for regenerative medicine. Elsevier; 2019. p. 223–254. https://doi.org/10.1016/B978-0-08-102594-9.00008-5
  • REY C. Maturation of poorly crystalline apatites: chemical and structural aspects in vivo and in vitro. Cells Mater. 1995;5:345–356.
  • Sattary M, Kefayat A, Bigham A, et al. Polycaprolactone/Gelatin/Hydroxyapatite nanocomposite scaffold seeded with stem cells from human exfoliated deciduous teeth to enhance bone repair: in vitro and in vivo studies. https://doi.org/10.1080/1066785720201837488. 2020.
  • Singh G, Santhanakrishnan S. Fabrication and characterization of composite PMMA/HA scaffold using freeze casting method. https://doi.org/10.1080/1066785720211978640. 2021;1–8.
  • Park J-E, Jang Y-S, Park I-S, et al. The effect of multi-walled carbon nanotubes/hydroxyapatite nanocomposites on biocompatibility. https://doi.org/10.1080/0924304620171374705. 2017;27:53–65.
  • Wee CY, Yang Z, Thian ES. Past, present and future development of microspheres for bone tissue regeneration: a review. https://doi.org/10.1080/1066785720201759953 [Internet]. 2020 [cited 2022 Feb 15];36:364–374. Available from: https://www.tandfonline.com/doi/abs/10.1080/10667857.2020.1759953.
  • Chien YW, Joo Tai L, Koo Jin How J, et al. Investigating the degradation behaviour and characteristic changes of phase pure hydroxyapatite (HAp) microsphere scaffolds under static and dynamic conditions. https://doi.org/10.1080/1066785720212023846 [Internet]. 2022 [cited 2022 Feb 15]; Available from: https://www.tandfonline.com/doi/abs/10.1080/10667857.2021.2023846.
  • Fernandes MH, Alves MM, Cebotarenco M, et al. Citrate zinc hydroxyapatite nanorods with enhanced cytocompatibility and osteogenesis for bone regeneration. Mater Sci Eng C. 2020;115:111147 https://doi.org/10.1016/j.msec.2020.111147.
  • Thein-Han WW, Misra RDK. Three-dimensional chitosan-nanohydroxyapatite composite scaffolds for bone tissue engineering. JOM 2009 61:9 [Internet]. [cited 2022 Feb 15];61:41–44. Available from: 10.1007/s11837-009-0131-6.
  • Depan D, Venkata Surya PKC, Girase B, et al. Organic/inorganic hybrid network structure nanocomposite scaffolds based on grafted chitosan for tissue engineering. acta biomaterialia [Internet]. 2011 [cited 2022 Feb 15];7:2163–2175. Available from: https://pubmed.ncbi.nlm.nih.gov/21284959/.
  • Yang K, Xin -S-S, Qu H-Y, et al. Gentamicin loaded polyelectrolyte multilayers and strontium doped hydroxyapatite composite coating on Ti-6Al-4V alloy: antibacterial ability and biocompatibility. https://doi.org/10.1080/1066785720211956850. 2021;
  • Seyfoori A, Ebrahimi SAS, Omidian S, et al. Multifunctional magnetic ZnFe 2 O 4 -hydroxyapatite nanocomposite particles for local anti-cancer drug delivery and bacterial infection inhibition: an in vitro study. J Taiwan Inst Chem Eng. 2019;96:503–508 https://doi.org/10.1016/j.jtice.2018.10.018.
  • AbouAitah K, Stefanek A, Higazy IM, et al. Effective targeting of colon cancer cells with piperine natural anticancer prodrug using functionalized clusters of hydroxyapatite nanoparticles. In: Pharmaceutics. 2020. p. 12 https://doi.org/10.3390/pharmaceutics12010070.
  • Cui X, Liang T, Liu C, et al. Correlation of particle properties with cytotoxicity and cellular uptake of hydroxyapatite nanoparticles in human gastric cancer cells. Mater Sci Eng C. 2016;67:453–460 https://doi.org/10.1016/j.msec.2016.05.034.
  • Jin J, Zuo G, Xiong G, et al. The inhibition of lamellar hydroxyapatite and lamellar magnetic hydroxyapatite on the migration and adhesion of breast cancer cells. Springer.
  • EzhaveniS, Yuvakkumar R, Rajkumar M, et al. Preparation and characterization of nano-hydroxyapatite nanomaterials for liver cancer cell treatment. J Nanosci Nanotechnol. 2013;13(3):1631–1638 https://doi.org/10.1166/jnn.2013.7135.
  • Studart AR, Gonzenbach UT, Tervoort E, et al. Processing routes to macroporous ceramics: a review. J Am Ceram Soc. 2006;89(6):1771–1789 https://doi.org/10.1111/j.1551-2916.2006.01044.x.
  • Chahkandi M, Mirzaei M. Structural and particle size evolution of sol–gel-derived nanocrystalline hydroxyapatite. J Iran Chem Soc. 2017;14(3):567–575 https://doi.org/10.1007/s13738-016-1005-9.
  • Sun R, Li M, Lu Y, et al. Immersion behavior of hydroxyapatite (HA) powders before and after sintering. Mater Charact. 2006;56(3):250–254 https://doi.org/10.1016/j.matchar.2005.11.012.
  • Singh G, Santhanakrishnan S. Fabrication and characterization of composite PMMA/HA scaffold using freeze casting method. https://doi.org/10.1080/1066785720211978640 [Internet]. 2021 [cited 2022 Feb 15]; Available from: https://www.tandfonline.com/doi/abs/10.1080/10667857.2021.1978640.
  • Li D, Sun HF, Hu XH, et al. Facile method to prepare PLGA/hydroxyapatite composite scaffold for bone tissue engineering. http://doi.org/10.1179/1753555712Y0000000054 [Internet]. 2013 [cited 2022 Feb 15];28:316–323. Available from: https://www.tandfonline.com/doi/abs/.
  • Sattary M, Kefayat A, Bigham A, et al. Polycaprolactone/Gelatin/Hydroxyapatite nanocomposite scaffold seeded with Stem cells from human exfoliated deciduous teeth to enhance bone repair: in vitro and in vivo studies. https://doi.org/10.1080/1066785720201837488 [Internet]. 2020 [cited 2022 Feb 15]; Available from: https://www.tandfonline.com/doi/abs/10.1080/10667857.2020.1837488.
  • Lakrat M, Jabri M, Alves MM, et al. Three-dimensional nano-hydroxyapatite sodium silicate glass composite scaffold for bone tissue engineering - a new fabrication process at a near-room temperature. In: materials chemistry and physics. 2020. p. 124185 doi:10.1016/j.matchemphys.2020.124185.
  • Szczȩśniak B, Choma J, Jaroniec M. Major advances in the development of ordered mesoporous materials. Chem Comm. 2020;56(57):7836–7848.
  • Skorina T, Tikhomirova I. Alkali silicate binders: effect of SiO 2/Na 2O ratio and alkali metal ion type on the structure and mechanical properties. J Mater Sci. 2012;47(12):5050–5059.
  • Bass JL, Turner GL. Anion distributions in sodium silicate solutions. characterization by 29 SI NMR and infrared spectroscopies, and vapor phase osmometry. J Phys Chem B. 1997;101(50):10638–10644 https://doi.org/10.1021/jp9715282.
  • Tognonvi MT, Massiot D, Lecomte A, et al. Identification of solvated species present in concentrated and dilute sodium silicate solutions by combined 29Si NMR and SAXS studies. J Colloid Interface Sci. 2010;352(2):309–315 https://doi.org/10.1016/j.jcis.2010.09.018.
  • Nordström J, Sundblom A, Jensen GV, et al. Silica/alkali ratio dependence of the microscopic structure of sodium silicate solutions. J Colloid Interface Sci. 2013;397:9–17 https://doi.org/10.1016/j.jcis.2013.01.048.
  • Criado M, Fernández-Jiménez A, Palomo A, et al. Effect of the SiO2/Na2O ratio on the alkali activation of fly ash. Part II: 29Si MAS-NMR survey. Microporous Mesoporous Mater. 2008;109(1–3):525–534 https://doi.org/10.1016/j.micromeso.2007.05.062.
  • Essifi K, Lakrat M, Berraaouan D, et al. Optimization of gallic acid encapsulation in calcium alginate microbeads using box-Behnken experimental design. In Polymer bulletin. 2020 doi:https://doi.org/10.1007/s00289-020-03397-9.
  • Cibilakshmi G, Jegan J. A DOE approach to optimize the strength properties of concrete incorporated with different ratios of PVA fibre and nano-Fe 2 O 3. Advanced Composites Letters. 2020;29:2633366X2091388 https://doi.org/10.1177/2633366X20913882.
  • Jones R. Design and analysis of Experiments. In: Douglas Montgomery, John Wiley and Sons, 2001, 684 pages, £33.95. quality and reliability engineering international. fifth ed. Vol. 18. 2002. p. 163 https://doi.org/10.1002/qre.458.
  • Allouss Dalia . Response surface methodology for optimization of methylene blue adsorption onto carboxymethyl cellulose-based hydrogel beads: adsorption kinetics, isotherm, thermodynamics and reusability studies. RSC Advances. 2019;65:37858–37869 https://doi.org/10.1039/C9RA06450H.
  • Bom S, Santos C, Barros R, et al. Effects of starch incorporation on the physicochemical properties and release kinetics of alginate-based 3D hydrogel patches for topical delivery. Pharmaceutics. 2020;12(8):1–20.
  • Scherrer P. Bestimmung der größe und der inneren struktur von kolloidteilchen mittels röntgenstrahlen. Nachrichten von der Gesellschaft der wissenschaften zu göttingen, Mathematisch-physikalische klasse. 1918:98–100.
  • ASTM Standard D1621. Standard test method for compressive properties of rigid cellular plastics 1. ASTM book of standards. ASTM International; 2016. p. 1–5.
  • Ke Z, Cao X, Shan C, et al. The effect of alkali metal oxide on the properties of borosilicate fireproof glass: structure, thermal properties, viscosity, chemical stability. In: Ceramics international. 2021.
  • Tognonvi MT, Soro J, Rossignol S. Physical-chemistry of silica/alkaline silicate interactions during consolidation. part 1: effect of cation size. J Non-Crystalline Solids. 2012;358(1):81–87.
  • Rees CA, Provis JL, Lukey GC, et al. Attenuated total reflectance Fourier transform infrared analysis of fly ash geopolymer gel aging. Langmuir. 2007;23(15):8170–8179.
  • Tan J, Zhao S, Wang W, et al. The effect of cooling rate on the structure of sodium silicate glass. Materials Science and Engineering B: Solid-State Materials for Advanced Technology. 2004;106(3):295–299.
  • Kouassi SS, Tognonvi MT, Soro J, et al. Consolidation mechanism of materials obtained from sodium silicate solution and silica-based aggregates. J Non-Crystalline Solids. 2011;357(15):3013–3021.
  • Gharzouni A, Joussein E, Samet B, et al. Effect of the reactivity of alkaline solution and metakaolin on geopolymer formation. J Non-Crystalline Solids. 2015;410:127–134.
  • Santos C, Turiel S, Sousa Gomes P, et al. Vascular biosafety of commercial hydroxyapatite particles: discrepancy between blood compatibility assays and endothelial cell behavior. J Nanobiotechnology. 2018;16(1):27.
  • Oh T. Correlation between potential barrier and FTIR spectra in SiOC film with the C-O bond of sp3 structure. Bull Korean Chem Soc. 2009;30:467–470.
  • Benataya K, Lakrat M, Elansari LL, et al. Synthesis of B-type carbonated hydroxyapatite by a new dissolution-precipitation method. Mater Today Proc. 2020;31:S83–S88.
  • Marković S, Veselinović L, Lukić MJ, et al. Synthetical bone-like and biological hydroxyapatites: a comparative study of crystal structure and morphology. Biomed Mater. 2011;6(4):045005.
  • Drouet C, Bosc F, Banu M, et al. Nanocrystalline apatites: from powders to biomaterials. Powder Technol. 2009;190(1–2):118–122.
  • Yeni YN, Fyhrie DP. Finite element calculated uniaxial apparent stiffness is a consistent predictor of uniaxial apparent strength in human vertebral cancellous bone tested with different boundary conditions. J Biomech. 2001;34(12):1649–1654.
  • Giesen EBW, Ding M, Dalstra M, et al. Mechanical properties of cancellous bone in the human mandibular condyle are anisotropic. J Biomech. 2001;34(6):799–803.
  • Ghomi H, Fathi MH, Edris H. Effect of the composition of hydroxyapatite/bioactive glass nanocomposite foams on their bioactivity and mechanical properties. Mater Res Bull. 2012;47(11):3523–3532.
  • He X, Tang K, Li X, et al. A porous collagen-carboxymethyl cellulose/hydroxyapatite composite for bone tissue engineering by bi-molecular template method. Int J Biol Macromol. 2019;137:45–53.
  • Jiang L, Li Y, Wang X, et al. Preparation and properties of nano-hydroxyapatite/chitosan/carboxymethyl cellulose composite scaffold. Carbohydr Polym. 2008;74(3):680–684.
  • Nejati E, Firouzdor V, Eslaminejad MB, et al. Needle-like nano hydroxyapatite/poly(l-lactide acid) composite scaffold for bone tissue engineering application. Mater Sci Eng C. 2009;29(3):942–949.
  • Liu X, Zhao M, Lu J, et al. Cell responses to two kinds of nanohydroxyapatite with different sizes and crystallinities. Int J Nanomedicine. 2012;7:1239–1250.
  • Ben-Arfa BAE, Salvado IMM, Ferreira JMF, et al. Enhanced bioactivity of a rapidly-dried sol-gel derived quaternary bioglass. Mater Sci Eng C. 2018;91:36–43.
  • Leu A, Stieger SM, Dayton P, et al. Angiogenic response to bioactive glass promotes bone healing in an irradiated calvarial defect. Tissue Engineering - Part A. 2009;15(4):877–885.
  • Hoppe A, Güldal NS, Boccaccini AR. A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics. In: Biomaterials. 2011. p. 2757–2774.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.