Publication Cover
Materials Technology
Advanced Performance Materials
Volume 37, 2022 - Issue 13
234
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Effect of Hydrothermal reaction times and temperature-dependent Spherical like NiCo2O4 nanoparticles for supercapacitor application

, &
Pages 2668-2678 | Received 06 Nov 2021, Accepted 22 Mar 2022, Published online: 31 Mar 2022

References

  • Chu S, Majumdar A. Opportunities and challenges for a sustainable energy future. Nature. 2012;488:294–303.
  • Chu S, Cui Y, Liu N. The path towards sustainable energy. Nat Mater. 2017;16:16–22.
  • Armstrong RC, Wolfram C, de Jong KP, et al. The frontiers of energy. Nat Energy. 2016;1(15020):1–8.
  • Khamlich S, Abdullaeva Z, Kennedy JV, et al. High performance symmetric supercapacitor based on zinc hydroxychloride nanosheets and 3D graphene-nickel foam composite, Appl. Surf Sci. 2017;405:329–336.
  • Kaviyarasu K, Manikandan E, Kennedy J, et al. Synthesis and characterization studies of NiO nanorods for enhancing solar cell efficiency using photon upconversion materials. Ceram Int. 2016;42:8385–8394.
  • Liu W, Deng F, Song S, et al. LLZO@EmimFSI@PEO derived hybrid solid electrolyte for high-energy lithium metal batteries. Mater Technol. 2020;35(9–10):618–624.
  • Li Y, Wang R, Zheng W, et al. Design of Nb2O5/graphene hybrid aerogel as polymer binder-free electrodes for lithium-ion capacitors. Mater Technol. 2020;35(9–10):625–634.
  • Mondal AK, Su D, Chen S, et al. Mesoporous MnCo2O4 with a flake‐like structure as advanced electrode materials for lithium‐ion batteries and supercapacitors. Chem A Eur J. 2015;21:1526–1532.
  • Jiang X, Wang R, Hu N, et al. Ultra-small MnCo2O4 nanocrystals decorated on nitrogen-enriched carbon nanofibers as oxygen cathode for Li-O2 batteries. Funct Mater Lett. 2020;13(6):2051035.
  • Chakraborty I, Bodurtha KJ, Heeder NJ, et al. Massive electrical conductivity enhancement of multilayer graphene/polystyrene composites using a nonconductive filler. ACS Appl Mater Interfaces. 2014;6: 16472–1675.
  • Han X, Liao F, Zhang Y, et al. Template-free synthesis of mesoporous ZnCo2O4 nanosheets and quasi-cubes via a simple solvothermal route. Mater Lett. 2018;217:56–59.
  • Liao L, Zhang H, Li W, et al. Facile synthesis of maguey-like CuCo2O4 nanowires with high areal capacitance for supercapacitors. J Alloys Compd. 2017;695:3503–3510.
  • Boopathi Raja R, Parthiba Varman M, Begum AN. Hydrothermal induced novel CuCo2O4 electrode for high performance supercapacitor applications. Vacuum. 2019;165:96–104.
  • Alizadeh-Gheshlaghi E, Shaabani B, Khodayari A, et al. Investigation of the catalytic activity of nano-sized CuO, Co3O4 and CuCo2O4 powders on thermal decomposition of ammonium perchlorate. Powder Technol. 2012;217:330–339.
  • Kuang M, Li TT, Chen H, et al. Hierarchical Cu2O/CuO/Co3O4 core-shell nanowires: synthesis and electrochemical properties. Nanotechnology. 2015;26:304002.
  • Venkatachalam V, Alsalme A, Alswieleh A, et al. Double hydroxide mediated synthesis of nanostructured ZnCo2O4 as high performance electrode material for supercapacitor applications. Chem Eng J. 2017;321:474–483.
  • Cheng J, Yan H, Lu Y, et al. Mesoporous CuCo2O4 nanograsses as multi-functional electrodes for supercapacitors and electro-catalysts. ?J Mater Chem A. 2015;3:9769–9776.
  • Pan L, Zhang Y, Shi CE. Synthesis of quasi-hexagonal Ag/NiCo2O4 nanosheets and their photocatalytic and antibacterial properties. J Iran Chem Soc. 2020;17:151–157.
  • Karmakar S, Varma S, Behera D. Investigation of structural and electrical transport properties of nano-flower shaped NiCo2O4 supercapacitor electrode materials. J Alloys Compd. 2018;757:49–59.
  • Babu MH, Dev BC, Podder J. Texture coefficient and band gap tailoring of Fe-doped SnO2 nanoparticles via thermal spray pyrolysis. Rare Met. 2019;1–10.
  • Rajesh JA, Min BK, Kim JH, et al. Cubic spinel AB2O4 type porous ZnCo2O4 microspheres: facile hydrothermal synthesis and their electrochemical performances in pseudocapacitor. J Electrochem Soc. 2016;163:A2418.
  • Nakhowong R, Chueachot R. Synthesis and magnetic properties of copper cobaltite (CuCo2O4) fibers by electrospinning. J Alloys Compd. 2017;715:390–396.
  • Udhayan S, Udayakumar R, Sagayaraj R, et al. Evaluation of bioactive potential of a tragia involucrata healthy leaf extract @ ZnO nanoparticles. BioNanoScience. 2021;11:703–719.
  • Chen H, Ding L, Sun W, et al. Synthesis and characterization of Ni doped SnO 2 microspheres with enhanced visible-light photocatalytic activity. RSC Adv. 2015;69:56401–56409.
  • Srinivas K, Rao SM, Reddy PV. Structural, electronic and magnetic properties of Sn 0.95 Ni 0.05 O2 nanorods. Nanoscale. 2011;3:2642–2653.
  • Shanmugavani A, Selvan RK. Improved electrochemical performances of CuCo2O4/CuO nanocomposites for asymmetric supercapacitors. Electrochim Acta. 2016;188:852–862.
  • Nguyen HH, To NV, Tran TV, et al. Mixing amorphous carbon enhanced electrochemical performances of NiCo2O4 nanoparticles as anode materials for sodium-ion batteries. Appl Phys A. 2020;7:1–9.
  • Nakate UT, Kale SN. Microwave assisted synthesis and characterizations of NiCo2O4 nanoplates and electrical, magnetic properties. Mater Today. 2016, 3, 1992–1998.
  • Cai L, Li Y, Xiao X, et al. The electrochemical performances of NiCo2O4 nanoparticles synthesized by one-step solvothermal method. Ionics. 2017;23:2457–2463.
  • Mahmoudi M, Sant S, Wang B, et al. Superparamagnetic iron oxide nanoparticles (SPIONs): development, surface modification and applications in chemotherapy. Adv Drug Deliv Rev. 2011;63:24–46.
  • Sharma Y, Sharma N, Rao GS, et al. Lithium recycling behaviour of nano-phase-CuCo2O4 as anode for lithium-ion batteries. J Power Sources. 2007;173:495–501.
  • Marsan B, Fradette N, Beaudoin G. Physicochemical and electrochemical properties of CuCo2O4 electrodes prepared by thermal decomposition for oxygen evolution. J Electrochem Soc. 1992;139:1889.
  • Steinfeld B, Scott J, Vilander G, et al. The role of lean process improvement in implementation of evidence-based practices in behavioral health care. J Behav Health Serv Res. 2015;42:504–518.
  • Amiri M, Akbari Javar H, Mahmoudi Moghaddam H. Facile green synthesis of NiO/NiCo2O4 nanocomposite as an efficient electrochemical platform for determination of dopamine. Electroanalysis. 2021;33:1205–1214.
  • Das S, Manoharan C, Venkateshwarlu M, et al. Structural, optical, morphological and magnetic properties of nickel doped cobalt ferrite nanoparticles synthesized by hydrothermal method. J Mater Sci. 2019;22:19880–19893.
  • Saravanakumar B, Priyadharshini T, Ravi G, et al. Hydrothermal synthesis of spherical NiCo2O4 nanoparticles as a positive electrode for pseudocapacitor applications. J Sol Gel Sci Techn. 2017;84:297–305.
  • GilaCha H, HwaaSohn J, JoonaLee K, et al. Hierarchical NiO hollow microspheres: electrochemical and magnetic properties. RSC Adv. 2012;26:9786–9790.
  • Sun S, Wen Z, Jin J, et al. Synthesis of ordered mesoporous CuCo2O4 with different textures as anode material for lithium ion battery. Microporous Mesoporous Mater. 2013;169:242–247.
  • Kakvand P, Rahmanifar MS, El-Kady MF, et al. Synthesis of NiMnO3/C nano-composite electrode materials for electrochemical capacitors. Nanotechnology. 2016;31: 315401-315401.
  • Tholkappiyan R, Naveen AN, Sumithra S, et al. Investigation on spinel MnCo2O4 electrode material prepared via controlled and uncontrolled synthesis route for supercapacitor application. J Mater Sci. 2015;50:5833–5843.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.