Publication Cover
Materials Technology
Advanced Performance Materials
Volume 37, 2022 - Issue 13
463
Views
6
CrossRef citations to date
0
Altmetric
Research Article

Investigation of in-vitro biocompatibility and in-vivo biodegradability of AM series Mg alloys

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 2819-2831 | Received 02 Mar 2022, Accepted 18 May 2022, Published online: 26 May 2022

References

  • Pilliar RM, Narayan, Roger. Biomedical Materials, Chap Tit Metallic biomaterials. 2 . Switzerland: Springer Cham. 2021. p. 1–47. 978-3-030-49206-9 doi:10.1007/978-3-030-49206-9_1.
  • Acharya S, Suwas S, Chatterjee K. Review of recent developments in surface nanocrystallization of metallic biomaterials. Nanoscale. 2021;13(4):2286–2301.
  • Davoodi E, Montazerian H, Mirhakimi AS, et al. Additively manufactured metallic biomaterials. Bioact. Mater. 2022;15:214–249 doi:10.1016/j.bioactmat.2021.12.027 .
  • Baltatu M-S, Burduhos-Nergis D-D, Burduhos-Nergis D-P, Vizureanu, P, et al. . Advanced Metallic Biomaterials. Millersville, PA, USA: Materials Research Forum LLC. 2022. 978-1-64490-176-2.
  • Furuya H, Kogiso N, Matunaga S, et al. Applications of magnesium alloys for aerospace structure systems materials science forum. Trans Tech Publ. 2000;350-351:341–348.
  • Mordike B, Ebert T. Magnesium: properties-applications-potential. Mater Sci Eng A. 2001;302(1):37–45.
  • Elen L, Cicek B, Koç E, et al. Effects of alloying element and cooling rate on properties of Am60 Mg alloy. Mater Res Express. 2019;6(9):096511.
  • Marsavina L, Iacoviello F, Pirvulescu LD, et al. Engineering prediction of fatigue strength for Am50 magnesium alloys. Int J Fatigue. 2019;127:10–15.
  • Lukyanova E, Anisimova N, Martynenko N, et al. Features of in vitro and in vivo behaviour of magnesium alloy We43. Mater Lett. 2018;215:308–311.
  • Witte F, Fischer J, Nellesen J, et al. In vitro and in vivo corrosion measurements of magnesium alloys. Biomaterials. 2006;27(7):1013–1018.
  • Gu X-N, Zheng Y-F. A review on magnesium alloys as biodegradable materials, Front Mater Sci. 2010;4(2):111–115.
  • Chen J, Tan L, Yang K. Recent advances on the development of biodegradable magnesium alloys: a review. Mater Technol. 2016;31(12):681–688.
  • Abdal-hay A, Dewidar M, Lim JK. Biocorrosion behavior and cell viability of adhesive polymer coated magnesium based alloys for medical implants. Appl Surf Sci. 2012;261:536–546.
  • Trivedi P, Nune K, Misra R. Degradation behaviour of magnesium-rare earth biomedical alloys. Mater Technol. 2016;31(12):726–731.
  • Xu L, Yu G, Zhang E, et al. In vivo corrosion behavior of Mg‐Mn‐Zn Alloy for bone implant application. J Biomed Mater Res. 2007;83(3):703–711.
  • Han P, Cheng P, Zhang S, et al. In vitro and in vivo studies on the degradation of high-purity Mg (99.99 Wt.%) screw with femoral intracondylar fractured rabbit model. Biomaterials. 2015;64:57–69.
  • Chen Q, Thouas GA. Metallic implant biomaterials. Mater Sci Eng R Rep. 2015;87:1–57.
  • Kainer K, Von Buch F. The Current State of Technology and Potential for Further Development of Magnesium Applications Prof. Dr. K. U. Kainer. Magnesium – Alloys and Technology. Weinheim: Wiley-VCH. 2003;1–22 9783527305704. doi:10.1002/3527602046.
  • Makkar P, Sarkar SK, Padalhin AR, et al. In vitro and in vivo assessment of biomedical Mg-Ca alloys for bone implant applications. J Appl Biomater Funct Mater. 2018;16(3):126.
  • Kawamura N, Nakao Y, Ishikawa R, et al. Degradation and biocompatibility of az31 magnesium alloy implants in vitro and in vivo: a micro-computed tomography study in rats. Materials. 2020;13(2):473.
  • González S, Pellicer E, Suriñach S. Biodegradation and mechanical integrity of magnesium and magnesium alloys suitable for implants Chamy, R, Rosenkranz, F, et al. Biodegradation: Engineering and Technology. Rijeka, Croatia: InTech. 2013. p. 313–374. doi:10.5772/55584.
  • Nabiyouni M, Brückner T, Zhou H, et al. Magnesium-based bioceramics in orthopedic applications. Acta Biomater. 2018;66:23.
  • Geetha M, Singh AK, Asokamani R, et al. Ti based biomaterials, the ultimate choice for orthopaedic implants–a review. Prog Mater Sci. 2009;54(3):397–425.
  • Chen C, Chen J, Wu W, et al. In vivo and in vitro evaluation of a biodegradable magnesium vascular stent designed by shape optimization strategy. Biomaterials. 2019;221:119414.
  • Zheng Y, Gu X, Witte F. Biodegradable metals. Mater Sci Eng R Rep. 2014;77:1–34.
  • Matykina E, Garcia I, Arrabal R, et al. Role of peo coatings in long-term biodegradation of a Mg alloy. Appl Surf Sci. 2016;389:810–823.
  • Abdal-Hay A, Hasan A, Lee M-H, et al. Biocorrosion behavior of biodegradable nanocomposite fibers coated layer-by-layer on Am50 magnesium implant. Mater Sci Eng C. 2016;58:1232–1241.
  • Abdal-hay A, Amna T, Lim JK. Biocorrosion and osteoconductivity of Pcl/Nhap composite porous film-based coating of magnesium alloy. Solid State Sci. 2013;18:131–140.
  • Wan P, Tan L, Yang K. Surface modification on biodegradable magnesium alloys as orthopedic implant materials to improve the bio-adaptability: a review. J Mater Sci Technol. 2016;32(9):827–834.
  • Agarwal S, Curtin J, Duffy B, et al. Biodegradable magnesium alloys for orthopaedic applications: a review on corrosion, biocompatibility and surface modifications. Mater Sci Eng C. 2016;68:948–963.
  • Angrisani N, Reifenrath J, Zimmermann F, et al. Biocompatibility and degradation of Lae442-based magnesium alloys after implantation of up to 3.5 years in a rabbit model. Acta Biomater. 2016;44:355–365.
  • Tie D, Liu H, Guan R, et al. In vivo assessment of biodegradable magnesium alloy ureteral stents in a pig model. Acta Biomater. 2020;116:415–425.
  • Oshibe N, Marukawa E, Yoda T, et al. Degradation and interaction with bone of magnesium Alloy We43 implants: a long-term follow-up in vivo rat tibia study. J Biomater Appl. 2019;33(9):1157–1167.
  • Sezer N, Evis Z, Kayhan SM, et al. Review of magnesium-based biomaterials and their applications. J Magnesium Alloy. 2018; 6(1):23–43. doi:10.1016/j.jma.2018.02.003.
  • Brar HS, Platt MO, Sarntinoranont M, et al. Magnesium as a biodegradable and bioabsorbable material for medical implants. Jom. 2009;61(9):31–34.
  • Abidin NIZ, Rolfe B, Owen H, et al. The in vivo and in vitro corrosion of high-purity magnesium and magnesium alloys Wz21 and Az91. Corros Sci. 2013;75:354–366.
  • Masood Chaudry U, Farooq A, Malik A, et al. Biodegradable properties of Az31-0.5 Ca magnesium alloy. Mater Technol. 2022;37:1–12.
  • Li Z, Shang Z, Wei X, et al. Corrosion resistance and cytotoxicity of Az31 magnesium alloy with N+ Ion implantation. Mater Technol. 2019;34(12):730–736.
  • Rössig C, Angrisani N, Helmecke P, et al. In vivo evaluation of a magnesium-based degradable intramedullary nailing system in a sheep model. Acta Biomater. 2015;25:369–383.
  • Sato T, Shimizu Y, Odashima K, et al. In vitro and in vivo analysis of the biodegradable behavior of a magnesium alloy for biomedical applications. Dent Mater J. 2019;38(1):11–21.
  • ISO. 10993-12: 2008–Biological evaluation of medical devices–Part 12: Sample preparation and reference materials. 2008 . https://www.iso.org/standard/75769.html
  • ISO. 10993–5: 2009 Biological evaluation of medical devices—Part 5: Tests for in vitro cytotoxicity. In: . ; 2009. https://www.iso.org/standard/36406.html
  • Tevlek A, Hosseinian P, Ogutcu C, et al. Bi-Layered Constructs of Poly (Glycerol-Sebacate)-Β-tricalcium phosphate for bone-soft tissue interface applications. Mater Sci Eng C. 2017;72:316–324.
  • Li Y, Chen S-K, Li L, et al. Bone defect animal models for testing efficacy of bone substitute biomaterials. J Orthop Translat. 2015;3(3):95–104.
  • Sattary M, Kefayat A, Bigham A, et al. Polycaprolactone/gelatin/hydroxyapatite nanocomposite scaffold seeded with stem cells from human exfoliated deciduous teeth to enhance bone repair: in vitro and in vivo studies. Mater Technol. 2020;35:1–14.
  • Ostertagova E, Ostertag O, Kováč J. Methodology and application of the Kruskal-Wallis test applied mechanics and materials. Trans Tech Publ. 2014;611:115–120.
  • Dinno A. Nonparametric Pairwise Multiple Comparisons in Independent Groups Using Dunn’s Test. STATA J. 2015;15(1):292–300.
  • Park YS, David AE, Park KM, et al. Controlled release of simvastatin from in situ forming hydrogel triggers bone formation in mc3t3-E1 Cells. AAPS J. 2013;15(2):367–376.
  • Wang R, Eliezer A, Gutman E. An investigation on the microstructure of an Am50 magnesium alloy. Mater Sci Eng A. 2003;355(1–2):201–207.
  • Kiełbus A, Rzychoń T, Cibis R. Microstructure of Am50 Die Casting Magnesium Alloy. J Achiev Mater Manuf. 2006;18(1–2):135.
  • Kondori B, Mahmudi R. Effect of Ca additions on the microstructure, thermal stability and mechanical properties of a cast Am60 magnesium alloy. Mater Sci Eng A. 2010;527(7–8):2014–2021.
  • Ma Y, Zhang J, Yang M. Research on microstructure and alloy phases of Am50 magnesium alloy. J Alloys Compd. 2009;470(1–2):515–521.
  • Liu F, Liang W, Li X, et al. Improvement of corrosion resistance of pure magnesium via vacuum pack treatment. J Alloys Compd. 2008;461(1–2):399–403.
  • Al Bacha S, Aubert I, Devos O, et al. Corrosion of pure and milled Mg17al12 in “model”seawater solution. Int J Hydrogen Energy. 2020;45(32):15805–15813.
  • Çiçek B, Sun Y. A Study on the Mechanical and Corrosion Properties of Lead Added Magnesium Alloys. Mater Des. 2012;37:369–372.
  • Gopi K, Nayaka HS, Sahu S. Corrosion behavior of ecap-processed Am90 magnesium alloy. Arab J Sci Eng. 2018;43(9):4871–4878.
  • Reifenrath J, Krause A, Bormann D, et al. Profound differences in the in‐vivo‐degradation and biocompatibility of two very similar rare‐earth containing mg‐alloys in a rabbit model. Mater Werkst. 2010;41(12):1054–1061.
  • Aghion E, Levy G, Ovadia S. In vivo behavior of biodegradable Mg–Nd–Y–Zr–Ca alloy. J Mater Sci Mater Med. 2012;23(3):805–812.
  • Henderson SE, Verdelis K, Maiti S, et al. Magnesium alloys as a biomaterial for degradable craniofacial screws. acta biomater. 2014;10(5):2323–2332.
  • Bohner M, Galea L, Doebelin N. Calcium phosphate bone graft substitutes: failures and hopes. J Eur Ceram Soc. 2012;32(11):2663–2671.
  • Tan L, Wang Q, Lin X, et al. Loss of mechanical properties in vivo and bone–implant interface strength of az31b magnesium alloy screws with si-containing coating. Acta Biomater. 2014;10(5):2333–2340.
  • Lories RJ, Luyten FP, De Vlam K. Progress in spondylarthritis. mechanisms of new bone formation in spondyloarthritis. Arthritis Res Ther. 2009;11(2):1–8.
  • Kotha SP, Hsieh Y-F, Strigel RM, et al. Experimental and finite element analysis of the rat ulnar loading model—correlations between strain and bone formation following fatigue loading. J Biomech. 2004;37(4):541–548.
  • Comba B, Cinar A, Comba A, et al. Effects of ACTH application on kidney function tests, the electrolytes and hematological parameters in rats. Ankara Univ Vet Fak Derg. 2016;63(3):229–233.
  • Karaca T, Bayıroğlu F, Cemek M, et al. Effects of green tea extract and lactobacillus casei strain shirota on levels of serum minerals, cholesterol, triglycerides, glucose and lactate in rats fed on high-carbohydrate and high-lipid diets. Kafkas J Med Sci. 2013;1:1–7.
  • Comba B, Mİs L, Comba A, et al. The effects of sildenafil citrate on some haematological parameters and mineral matters in wound healing of rats created experimental diabetes. Ataturk Univ Vet Bilim Derg. 2014;9(3):180–186.
  • Bamberger M, Dehm G. Trends in the development of New Mg ALLOYS. Annu Rev Mater Res. 2008;38:505–533.
  • Chen J, Tan L, Yu X, et al. Mechanical properties of magnesium alloys for medical application: a review. J Mech Behav Biomed Mater. 2018;87:68–79.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.