Publication Cover
Materials Technology
Advanced Performance Materials
Volume 37, 2022 - Issue 14
252
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Surface engineering of MOFs-derived Co3O4 nanosheets for high-performance supercapacitor

, , &
Pages 2976-2982 | Received 26 Mar 2022, Accepted 08 Jul 2022, Published online: 15 Jul 2022

References

  • Pu J, Wang YJ, Chen X, et al. Recent advances in architecture design of nanoarrays for flexible solid-state aqueous batteries. Nano Futures. 2020;4(3):032002.
  • Pu J, Cao QH, Gao Y, et al. Ultrafast-charging quasi-solid-state fiber-shaped zinc-ion hybrid supercapacitors with superior flexibility. J Mater Chem A. 2021;9(32):17292–17299.
  • Yin XM, Li HJ, Han LY, et al. All Si3N4 nanowires membrane based high-performance flexible solid-state asymmetric supercapacitor. Small. 2021;17(18):2008056.
  • Jiang XP, Wang RH, Hu N, et al. Ultra-small MnCo2O4 nanocrystals decorated on nitrogen-enriched carbon nanofibers as oxygen cathode for Li-O2 batteries. Funct Mater Lett. 2020;13(6):2051035.
  • Momeni MM, Nazari Z, Kazempour A, et al. Preparation of CuO nanostructures coating on copper as supercapacitor materials. Surf Eng. 2014;30(11):775–778.
  • Guan C, Liu XM, Ren WN, et al. Rational design of metal-organic framework derived hollow NiCo2O4 arrays for flexible supercapacitor and electrocatalysis. Adv Energy Mater. 2017;7(12):1602391.
  • Yin XM, Li HJ, Fu YQ, et al. Hierarchical core-shell structure of NiCo2O4 nanosheets@HfC nanowires networks for high performance flexible solid-state hybrid supercapacitor. Chem Eng J. 2020;392:124820.
  • Najib S, Erdem E. Current progress achieved in novel materials for supercapacitor electrodes: mini review. Nanoscale Adv. 2019;1(8):2817–2827.
  • Yang TX, Zheng WK, Yang ZG, et al. Rational structure design of FeCo-based materials as efficient electrodes for overall water-splitting. Funct Mater Lett. 2022;15(3):2251027.
  • Wei J, Yang ZG, Li ZY, et al. Constructing a composite lithium anode for high-performance solid-state lithium–metal batteries via in-situ alloying reaction. Funct Mater Lett. 2022;15(3):2250015.
  • Jiang J, Li YY, Liu JP, et al. Recent advances in metal oxide-based electrode architecture design for electrochemical energy storage. Adv Mater. 2012;24(38):5166–5180.
  • Krishnasamy K, Purushothaman KK. Preparation and characterisation of MnS@ Mn3O4/C nanoflakes for hybrid supercapacitor applications. Mater Technol. 2022;37(1):63–70.
  • Lai XY, Halpert JE, Wang D. Recent advances in micro-/nano-structured hollow spheres for energy applications: from simple to complex systems. Energy Environ Sci. 2012;5(2):5604–5618.
  • Yin XM, Li HJ, Yuan RM, et al. Metal-organic framework derived hierarchical NiCo2O4 triangle nanosheet arrays@SiC nanowires network/carbon cloth for flexible hybrid supercapacitors. J Mater Sci Technol. 2021;81:162–174.
  • Liu T, Zhang LY, You W, et al. Core–shell nitrogen-doped carbon hollow spheres/Co3O4 nanosheets as advanced electrode for high-performance supercapacitor. Small. 2018;14(12):1702407.
  • Ates M, Yoruk O, and Bayrak Y. Binary nanocomposites of reduced graphene oxide and cobalt (II, III) oxide for supercapacitor devices. Mater Technol. 2021;37(9):1–15.
  • Yin XM, Liu HM, Cheng C, et al. MnO2 nanosheets decorated MOF-derived Co3O4 triangle nanosheet arrays for high-performance supercapacitors. Mater Technol. 2021;1–6.
  • Cai Z, Bi YM, Hu EY, et al. Single-Crystalline ultrathin Co3O4 nanosheets with massive vacancy defects for enhanced electrocatalysis. Adv Energy Mater. 2018;8(3):1701694.
  • Xia XH, Tu JP, Zhang YQ, et al. Freestanding Co3O4 nanowire array for high performance supercapacitors. RSC Adv. 2012;2(5):1835–1841.
  • Xiong ZH, Hu P, Zhang Y, et al. All-solid-state supercapacitors based on flexible Co3O4 nanoflowers/rGO nanocomposites. J Electron Mater. 2018;47(10):5987–5992.
  • Yin XM, Li HJ, Yuan RM, et al. General formation of Prussian blue analogue microtubes for high-performance Na-ion hybrid supercapacitors. Sci China Mater. 2020;63(5):739–747.
  • Ren JC, Huang YL, Zhu H, et al. Recent progress on MOF-derived carbon materials for energy storage. Carbon Energy. 2020;2(2):176–202.
  • Yin XM, Li HJ, Yuan RM, et al. Hierarchical self-supporting sugar gourd-shape MOF-derived NiCo2O4 hollow nanocages@SiC nanowires for high-performance flexible hybrid supercapacitors. J Colloid Interf Sci. 2021;586:219–232.
  • Zhang YZ, Wang Y, Xie YL, et al. Porous hollow Co3O4 with rhombic dodecahedral structures for high-performance supercapacitors. Nanoscale. 2014;6(23):14354–14359.
  • Guo SQ, Xu XL, Liu JB, et al. Cohesive porous Co3O4/C composite derived from zeolitic imidazole framework-67 (ZIF-67) single-source precursor as supercapacitor electrode. J Electrochem Soc. 2019;166(6):A960.
  • Li X, Wu HJ, Guan C, et al. (Ni, Co) Se2/NiCo-LDH core/shell structural electrode with the cactus-like (Ni, Co) Se2 core for asymmetric supercapacitors. Small. 2019;15(3):1803895.
  • Zhu CY, Wang HW, Guan C. Recent progress on hollow array architectures and their applications in electrochemical energy storage. Nanoscale Horiz. 2020;5(8):1188–1199.
  • Guan C, Sumboja A, Wu HJ, et al. Hollow Co3O4 nanosphere embedded in carbon arrays for stable and flexible solid-state zinc-air batteries. Adv Mater. 2017;29(44):1704117.
  • Liu QP, Zhou Q, Gao CS, et al. Excellent electrochemical stability of Co3O4 array with carbon hybridization derived from metal-organic framework. Nanotechnology. 2021;32(48):485710.
  • Yin XM, Li HJ, Yuan RM, et al. NiCoLDH nanosheets grown on MOF-derived Co3O4 triangle nanosheet arrays for high-performance supercapacitor. J Mater Sci Technol. 2021;62:60–69.
  • Yuan RM, Li HJ, Yin XM, et al. Cu nanowires paper interlinked with cobalt oxide films for enhanced sensing and energy storage. Chem Commun. 2019;55(61):9031–9034.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.