Publication Cover
Materials Technology
Advanced Performance Materials
Volume 37, 2022 - Issue 14
168
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Synthesis, characterisation and in vivo wound healing activity of chemogenic sulphur nanoparticles

, , ORCID Icon, &
Pages 3025-3040 | Received 02 Nov 2021, Accepted 17 Aug 2022, Published online: 01 Sep 2022

References

  • Stoica AE, Chircov C, Grumezescu AM. Nanomaterials for wound dressings: an up-to-date overview. Molecules. 2020;25(11):2699.
  • Pote AK, Pande VV, Patel VP, et al. Design & development of curcumin loaded zinc oxide nanoparticles decorated mesoporous silica liquid stitches: a proof of concept in animals. Mater Technol. 2022;37(8):511.
  • Naeimi M, Noohi N. Fabrication and characterisation of antibacterial porous alginate/aloe vera structures containing chitosan nanoparticles for wound dressing applications. Mater Technol. 2022;37(8):822.
  • Naskar A, Kim K. Recent advances in nanomaterial-based wound-healing therapeutics. Pharmaceutics. 2020;12(16):499.
  • Koudehia MF, Zibasereshta R. Synthesis of molecularly imprinted polymer nanoparticles containing gentamicin drug as wound dressing based polyvinyl alcohol/gelatin nanofiber. Mater Technol. 2020;35(1):21.
  • He R, Wang K, Ren J, et al. Efficacy of a synthetic biomimetic skin substitute of PLLA/gelatin nanofiber membrane in facilitating chronic cutaneous wound healing. Mater Technol. 2020;35(13–14):872.
  • Mu B, Wang R, Gao J, et al. Nano gold incorporated into Aerva javanica chitosan hydrogels disrupting agents against infections of burn wound. Mater Technol. 2021;36(13):783.
  • Selvarajan V, Obuobi S, Ee PLR. Silica nanoparticles—A versatile tool for the treatment of bacterial infections. Front Chem. 2020;8:602.
  • Tian B, Liu Y. Antibacterial applications and safety issues of silica-based materials: a review. Int J Appl Ceram. 2020;18(2):289.
  • Lamkhao S, Phaya M, Jansakun C, et al. Synthesis of hydroxyapatite with antibacterial properties using a microwave-assisted combustion method. Sci Rep. 2019;9:4015.
  • Silva-Holguın PN, Reyes-Lopez SY. Synthesis of hydroxyapatite-Ag composite as antimicrobial agent. Dose-Response. 2020;18(3):1–14.
  • Nikolova MP, Chavali MS. Metal oxide nanoparticles as biomedical materials. Biomimetics. 2020;5(2):1.
  • Sanchez-Lopez E, Gomes D, Esteruelas G, et al. Metal-based nanoparticles as antimicrobial agents: an overview. Nanomaterials. 2020;10(2):292.
  • Hoseinnejad, Jafari SM, Katouzian I. Inorganic and metal nanoparticles and their antimicrobial activity in food packaging applications. Crit Rev Microbiol. 2018;44(2):161.
  • Priyadarshi R, Roy S, Ghosh T, et al. Antimicrobial nanofillers reinforced biopolymer composite films for active food packaging applications - A review. Sustain Mater Technol. 2021;e00353.
  • Kalashnikova I, Das S, Seal S. Nanomaterials for wound healing: scope and advancement. Nanomedicine. 2015;10(16):2593.
  • Boyd DA. Sulfur and its role in modern materials science. Angew Chem Int Ed. 2016;55(50):15486.
  • Jin H, Sun Y, Sun Z, et al. Zero-dimensional sulfur nanomaterials: synthesis, modifications and applications. Coordin Chem Rev. 2021;438:213913.
  • Rai M, Ingle AP, Paralikar P. Sulfur and sulfur nanoparticles as potential antimicrobials: from traditional medicine to nanomedicine. Expert Rev Anti Infect Ther. 2016;14(10):969.
  • Roy Choudhury S, Goswami A. Supramolecular reactive sulphur nanoparticles: a novel and efficient antimicrobial agent. J Appl Microbiol. 2013;114(1):1.
  • Barkauskas J, Juskenas R, Mileriene V, et al. Effect of sulphur on the synthesis and modification of carbon nanostructures. Mater Res Bull. 2007;42(9):1732.
  • Santiago P, Carvajal E, Mendoza D, et al. Synthesis and structural characterization of sulphur nanowires. Microsc Microanal. 2006;12(S02):690.
  • Zhang Y, Li K, Huang J, et al. Preparation of monodispersed sulphur nanoparticles-partly reduced graphene oxide-polydopamine composite for superior performance lithium-sulphur battery. Carbon. 2017;114:8.
  • Suleiman M, Al-Masri M, Al Ali A, et al. Synthesis of nano-sized sulfur nanoparticles and their antibacterial activities. J Mater Environ Sci. 2015;6(2):513.
  • Shankar S, Pangeni R, Park JW, et al. Preparation of sulfur nanoparticles and their antibacterial activity and cytotoxic effect. Mater Sci Eng C. 2018;92:508.
  • Saedi S, Shokri M, Rhim JW. Antimicrobial activity of sulfur nanoparticles: effect of preparation methods. Arab J Chem. 2020;13(8):6580.
  • Zahran F, Hammadi M, Al-dulaimi M, et al. Potential role of sulfur nanoparticles as antitumor and antioxidant in mice. Der Pharmacia Lettre. 2018;10(5):7.
  • Jaiswal L, Shankar S, Rhim JW. Carrageenan-based functional hydrogel film reinforced with sulfur nanoparticles and grapefruit seed extract for wound healing application. Carbohydr Polym. 2019;224:115191.
  • Chaudhuri RG, Paria S. Synthesis of sulfur nanoparticles in aqueous surfactant solutions. J Colloid Interf Sci. 2010;343(2):439.
  • Yadav E, Singh D, Yadav P, et al. Ameliorative effect of biofabricated ZnO nanoparticles of Trianthema portulacastrum Linn. on dermal wounds via removal of oxidative stress and inflammation. RSC Adv. 2018;8:21621.
  • Yadav E, Yadav PK, Verma A. In silico study of Trianthema portulacastrum embedded iron oxide nanoparticles on glycogen synthase kinase-3β: a possible contributor to its enhanced in vivo wound healing potential. Front Pharmacol. 2021;12:664075.
  • Mortan JJ, Malone MH. Evaluation of vulnerary activity of an open wound procedure in rats. Arch Int Pharmacodyn Ther. 1972;196(1):117.
  • Ehrlich HP, Hunt TK. Effect of cortisone and anabolic steroids in tensile strength of healing wound. Ann Surg. 1969;170(2):203.
  • Lee KH. Studies on mechanism of action of salicylates. II. Retardation of wound healing by aspirin. J Pharm Sci. 1968;57(6):1042.
  • Pothireddy S, Kaliki A, Mekapogu AR, et al. Evaluation of the wound healing efficacy of chemical and phytogenic silver nanoparticles. IET Nanobiotechnol. 2016;10(5):340.
  • Toppo FA, Pawar RS. Appraisal on the wound healing activity of different extracts obtained from Aegle marmelos and Mucuna pruriens by in vivo experimental models. Niger J Clin Pract. 2016;19(6):753.
  • Bairy KL, Somayaji SN, Rao CM. An experimental model to produce partial thickness burn wound. Indian J Exp Biol. 1997;35(1):70.
  • Sood R, Chopra DS. Optimization of reaction conditions to fabricate Ocimum sanctum synthesized silver nanoparticles and its application to nano-gel systems for burn wounds. Mater Sci Eng C. 2018;92:575.
  • Neuman RE, Logan MA. The determination of collagen and elastin in tissue. J Biochem. 1950;186(2):549.
  • Dwivedi D, Dwivedi M, Malviya S, et al. Evaluation of wound healing, anti-microbial and antioxidant potential of Pongamia pinnata in wistar rats. J Tradit Complement Med. 2017;7(1):79.
  • Ammar I, Bardaa S, Mzid M, et al. Antioxidant, antibacterial and in vivo dermal wound healing effects of Opuntia flower extracts. Int J Biol Macromol. 2015;81:483.
  • Samadi A, Azandeh S, Orazizadeh M, et al. Fabrication and characterisation of chitosan/polyvinyl alcohol-based transparent hydrogel films loaded with silver nanoparticles and sildenafil citrate for wound dressing applications. Mater Technol. 2022;37(5):355.
  • Berkow EL, Lockhart SR, Zeichner LO. Antifungal susceptibility testing: current approaches. Clin Microbiol Rev. 2020;33(3):e00069–19.
  • Weinsteinet MP. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; approved standard. 11th ed. Vol 1. Pennsylvania, USA: Clinical and Laboratory Standards Institute (CLSI), M07. 2018.
  • Alexander BD. Reference method for broth dilution antifungal susceptibility testing of yeasts, approved standard. 4th ed. Vol 27. Pennsylvania, USA: Clinical and Laboratory Standards Institute (CLSI). 2017. p. 1.
  • Aljelehawy Q, Karimi N, Alavi M. Comparison of antibacterial and cytotoxic activities of phytosynthesized ZnONPs by leaves extract of Daphne mucronata at different salt sources. Mater Technol. 2021;36(12):747.
  • Farahmand RA, Raouf F, Hamedi S, et al. Investigation on antibacterial activity of α-Fe2O3/ZnO nanocomposites against Gram-positive and Gram-negative bacteria. Mater Technol. 2022 doi:10.1080/10667857.2022.2026105 https://www.tandfonline.com/doi/full/10.1080/10667857.2022.2026105?scroll=top&needAccess=true; 1-11.
  • Sen S, Duttaa D, Bhattacharyya AJ. Ultra-small sulphur nanoparticles configured inside a flexible organic mixed conducting network as a cathode for lithium–sulphur batteries. J Mater Chem A. 2015;3:20958–20965.
  • Debye P, Scherrer P. Interferenzen an regellos orientierten Teilchen im Réntgenlicht. Physik Zeitschrift. 1916;17:277.
  • Sekkina MA, El-Shereafy E, Mashaly A, et al. γ-Pyrolysis of crystalline sodium thiosulphate pentahydrate. J Radioanal Nucl Chem. 1998;237:113.
  • Stephen Turcotte B, Robert Benner E, Andrew Riley M, et al. Application of Raman spectroscopy to metal-sulfide surface analysis. Appl Opt. 1993;32(6):935.
  • Scott DW, McCullough JP, Kruse FH. Vibrational assignment and force constants of S8 from a normal-coordinate treatment. J Mol Spectrosc. 1964;13:313.
  • Tward A. Raman spectroscopy of sulfur, sulfur-selenium, and sulfur-arsenic mixtures. J Phys Chem. 1968;72(12):4133.
  • Draize JH, Woodard G, Calvery HO. Methods for the Study of Irritation and toxicity of substances applied topically to the skin and mucous membranes. J Pharmacal Exp Ther. 1944;82(3):377.
  • Mugadea M, Patole M, Pokharkar V. Bioengineered mannan sulphate capped silver nanoparticles for accelerated and targeted wound healing: physicochemical and biological investigations. Biomed Pharmacother. 2017;91:95.
  • Thakur R, Jain N, Pathak R, et al. Practices in wound healing studies of plants. Evid Based Complement Alternat Med. 2011;2011:1.
  • Schultz GS, Chin GA, Moldawer L, et al. Principles of Wound Healing. In: Fitridge R, Thompson M, editors. Mechanisms of vascular disease: a reference book for vascular specialists. Adelaide: University of Adelaide Press; 2011. p. 423–450.
  • Gautam MK, Purohit V, Agarwal M, et al. In Vivo healing potential of aegle marmelos in excision, incision, and dead space wound models. Sci World J. 2014;2014:e740107.
  • Murthy S, Gautam MK, Goel S, et al. Evaluation of in vivo wound healing activity of Bacopa monniera on different wound model in rats. Biomed Res Int. 2013;2013:972028.
  • Kangt AH, Gross J. Relationship between the intra and intermolecular cross-links of collagen. Proc Natl Acad Sci. 1970;67(3):1307.
  • Roy P, Amdekar S, Kumar A, et al. In vivo antioxidative property, antimicrobial and wound healing activity of flower extracts of Pyrostegia venusta (Ker Gawl) Miers. J Ethnopharmacol. 2012;140(1):186.
  • Leigh IM. Reepithelialisation of wounds. In: Altmeyer P, Hoffmann K, El Gammal S, et al., editors. Wound Healing and Skin Physiology. Berlin: Springer-Verlag; 1995. p. 45–60.
  • Shanmugasundaram T, Radhakrishnan M, Gopikrishnan V, et al. In vitro antimicrobial and in vivo wound healing effect of actinobacterially synthesised nanoparticles of silver, gold and their alloy. RSC Adv. 2017;7:51729.
  • Rajendran NK, Kumar SSD, Houreld NN, et al. A review on nanoparticle-based treatment for wound healing. J Drug Deliv Sci Tec. 2018;44:421.
  • Sumbayev VV, Yasinska IM, Garcia CP, et al. Gold nanoparticles downregulate interleukin-1β-induced pro-inflammatory responses. Small. 2013;9(3):472.
  • Parnsamut C, Brimson S. Effects of silver nanoparticles and gold nanoparticles on IL-2, IL-6, and TNF-α production via MAPK pathway in leukemic cell lines. Genet Mol Res. 2015;14(2):3650.
  • Pivodova V, Frankova J, Galandakova A, et al. In vitro AuNPs’ cytotoxicity and their effect on wound healing. Nanobiomedicine (Rij). 2015;2:1.
  • Parcell S. Sulfur in human nutrition and applications in medicine. Altern Med Rev. 2002;7(1):22.
  • Kamoun EA, Kenawy ERS, Chen X. A review on polymeric hydrogel membranes for wound dressing applications: PVA-based hydrogel dressings. J Adv Res. 2017;8(3):217.
  • Wasef LG, Shaheen HM, El-Sayed YS, et al. Effects of silver nanoparticles on burn wound healing in a mouse model. Biol Trace Elem Res. 2020;193(2):456.
  • Tian J, Wong KK, Ho CM, et al. Topical delivery of silver nanoparticles promotes wound healing. Chem Med Chem. 2007;2(1):129.
  • Cockerill RF. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; approved standard. 9th ed. Vol 32. Pennsylvania, USA: Clinical and Laboratory Standards Institute (CLSI). 2012. p. 1.
  • Schneider T, Baldauf A, Ba LA. Selective antimicrobial activity associated with sulfur nanoparticles. J Biomed Nanotechnol. 2011;7(3):1.
  • Shankar S, Jaiswal L, Rhim J. New insight into sulphur nanoparticles: synthesis and applications. Crit Rev Environ Sci Technol. 2021;51(20):2329.
  • Rao KJ, Paria S. Use of sulfur nanoparticles as a green pesticide on Fusarium solani and Venturia inaequalis phytopathogens. RSC Adv. 2013;3:10471.
  • Choudhury SR, Ghosh M, Goswami A. Inhibitory effects of sulfur nanoparticles on membrane lipids of Aspergillus Niger: a novel route of fungistasis. Curr Microbiol. 2012;65(1):91.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.