Publication Cover
Materials Technology
Advanced Performance Materials
Volume 37, 2022 - Issue 14
157
Views
0
CrossRef citations to date
0
Altmetric
Research Article

An improvement in un-Encapsulated perovskite solar cell’s environmental stability via introduction of an electrode interface layer

, &
Pages 3079-3088 | Received 16 Apr 2022, Accepted 07 Sep 2022, Published online: 14 Sep 2022

References

  • https://www.nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies.20200925.pdf.
  • Green MA, Baillie AH, Snaith HJ. The emergence of perovskite solar cells. Nat Photonics. 2014;8:506.
  • Anbarasan R, Srinivasan M, Sundar JK, et al. Structural, electronic and optical properties of inorganic perovskite CsPb(1-x)GexI3: a first principle approach. Mater Technol. 2021. DOI:10.1080/10667857.2021.1915057
  • Jung HS, Park NG. Perovskite solar cells: from materials to devices. Small. 2015;11:10.
  • Li Y, Ma F, Zhao D, et al. Convenient synthesis of high-quality, all-inorganic lead halide perovskite nanocrystals for high purity monochrome QLED. Mater Technol. 2021;36(11):637.
  • Sun L, Li W, Zhu W, et al. Single-Crystal perovskite detector: development and perspectives. J Mater Chem C. 2020;8:11664.
  • Andreani LC, Bozzola A, Kowalczewski P, et al. Silicon solar cells: toward the efficiency limits. Adv Phys. 2019;4:1.
  • Werner J, Barraud L, Walter A, et al. Efficient near-Infrared-Transparent perovskite solar cells enabling direct comparison of 4-Terminal and monolithic perovskite/silicon tandem cells. ACS Energy Lett. 2016;1:474.
  • Rathore N, Panwar NL, Yettou F, et al. A comprehensive review of different types of solar photovoltaic cells and their applications. Internat J Ambi Energy. 2021;42(10):1200–1217.
  • Bishop JE, Routledge TJ, Lidzey DG. Advances in spray-Cast perovskite solar cells. J Phys Chem Lett. 2018;9:1977.
  • Deng Y, Dong Q, Bi C, et al. Air‐stable, efficient mixed‐cation perovskite solar cells with Cu electrode by scalable fabrication of active layer. Adv Energy Mater. 2016;6:1600372.
  • Whitaker JB, Kim DH, Larson BW, et al. Scalable slot-die coating of high performance perovskite solar cells. Sustain Energy Fuels. 2018;2:2442.
  • Rong Y, Ming Y, Ji W, et al. Toward industrial-scale production of perovskite solar cells: screen printing, slot-Die Coating, and emerging techniques. J Phys Chem Lett. 2018;9:2707.
  • Li J, Wang H, Chin XY, et al. Highly efficient thermally co-evaporated perovskite solar cells and mini-modules. Joule. 2020;4(5):1035–1053.
  • Hossain MI, Zakaria Y, Zikri A, et al. E-beam evaporated hydrophobic metal oxide thin films as carrier transport materials for large scale perovskite solar cells. Mater Technol. 2022;37(4):248–259.
  • Yun JH, Lyu M, Ahmed R, et al. Desirable TiO2 compact films for nanostructured hybrid solar cells. Mater Technol. 2020;35(1):31–38.
  • Park SY, Zhu K. Advances in SnO2 for efficient and stable n–i–p perovskite solar cells. Adv Mater. 2022;34:2110438.
  • Alla M, Bimli S, Manjunath V, et al. Towards lead-free all-inorganic perovskite solar cell with theoretical efficiency approaching 23%. Mater Technol. 2022. DOI:10.1080/10667857.2022.2091195
  • Ke QB, Wu JR, En Chiang S, et al. Improved performance of PCBM/MAPbI3 heterojunction photovoltaic cells with the treatment of a saturated BCP/IPA solution, Sol. Energy Mater Sol Cells. 2022;242:111782.
  • Jain S, Chaudhary N, Sharma SN. An insight into the mechanism of charge transfer of organic (P3HT): inorganic (CZTS) composites for hybrid photovoltaics. Mater Technol. 2022;37(8):684.
  • Nakka L, Cheng Y, Aberle AG, et al. Analytical review of spiro-OMeTAD hole transport materials: paths toward stable and efficient perovskite solar cells. Adv Energy Sustain Res. 2022;3:2200045.
  • Cui X, Jin J, Zou J, et al. NiOx nanocrystals with tunable size and energy levels for efficient and UV stable perovskite solar cells. Adv Funct Mater. 2022;32:2203049.
  • Diao XF, Tang YL, Tang TYL, et al. Study on the stability of organic-inorganic perovskite solar cells materials based on first principle. Mole Physics. 2020;118(8):e1665200.
  • Su J, Zheng X, Lang X, et al. Effect of precursor solution ageing time on the photovoltaic performance of perovskite solar cells. Funct Mater Lett. 2021;14:2151025.
  • Cai F, Wu J, Pan W, et al. Potassium oleate as an effective interface modifier for defect passivation in planar perovskite solar cells. Funct Mater Lett. 2022;15:2251035.
  • Kim JH, Williams ST, Cho N, et al. Enhanced environmental stability of planar heterojunction perovskite solar cells based on blade‐Coating. Adv Energy Mater. 2015;5:1401229.
  • Leijtens T, Eperon GE, Noel NK, et al. Stability of metal halide perovskite solar cells. Adv Energy Mater. 2015;5:1500963.
  • Yang J, Siempelkamp BD, Liu D, et al. Investigation of CH3NH3PbI3 degradation rates and mechanisms in controlled humidity environments using in situ techniques. ACS Nano. 2015;9:1955.
  • Chauhan AK, Kumar P. Degradation in perovskite solar cells stored under different environmental conditions. J Phys D Appl Phys. 2017;50:325105.
  • Hany R, Lin H, Castro FA. Focus issue on organic and hybrid photovoltaics. Sci Tech Adv Mater. 2019;20(1):42.
  • Hamed MSG, Mola GT. Mixed halide perovskite solar cells: progress and challenges. Critical Rev Sol Stat Mater Sci. 2020;45(2):85–112.
  • Elangovan NK, Sivaprakasam A. Investigation of parameters affecting the performance of perovskite solar cells. Mol Cryst Liq Cryst. 2020;710(1):66.
  • Chauhan AK, Kumar P, Pal SR, et al. Air-processed organo-metal halide perovskite solar cells and their air stability. J Mater Sci. 2017;52:10886.
  • Sanehira EM, de Villers BJT, Schulz P, et al. Influence of electrode interfaces on the stability of perovskite solar cells: reduced degradation using MoOx/Al for hole collection. ACS Energy Lett. 2016;1:38.
  • Jaffri SB, Ahmad KS. Interfacial engineering revolutionizers:perovskite nanocrystals and quantum dots accentuated performance enhancement in perovskite solar cells. Critical Rev Sol Stat Mater Sci. 2021;46(3):251.
  • You J, Meng L, Song TB, et al. Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers. Nat Nanotechnol. 2016;11:75.
  • Zhao J, Zheng X, Deng Y, et al. Is Cu a stable electrode material in hybrid perovskite solar cells for a 30-year lifetime? Energy Environ Sci. 2016;9:3650.
  • Kim MR, Kim SM, Bark CW. Characterization of perovskite solar cells with a solution processed two stage SnO2 electron transport layer. Mol Cryst Liq Cryst. 2021. DOI:10.1080/15421406.2021.1972230
  • Listorti A, Juarez-Perez EJ, Frontera C, et al. Effect of mesostructured layer upon crystalline properties and device performance on perovskite solar cells. J Phys Chem Lett. 2015;6(9):1628.
  • Wang Q, Lyu M, Zhang M, et al. Transition from the tetragonal to cubic phase of organohalide perovskite: the role of chlorine in crystal formation of CH3NH3PbI3 on TiO2 substrates. J Phys Chem Lett. 2015;6(21):4379.
  • Wang W, Zhang Z, Cai Y, et al. Enhanced performance of CH3NH3PbI3-xClx perovskite solar cells by CH3NH3I modification of TiO2-perovskite layer interface. Nanoscale Res Lett. 2016;11:316.
  • Bhatt V, Kumar M, Yadav P, et al. Low cost and solution processible sandwiched CH3NH3PbI3-xClx based photodetector. Mater Res Bull. 2018;99:79.
  • Li Y, Sun W, Yan W, et al. High‐Performance planar solar cells based on CH3NH3PbI3-xClx perovskites with determined chlorine mole fraction. Adv Funct Mater. 2015;25:4867.
  • Kumar P, Chauhan AK. Highly efficient flexible perovskite solar cells and their photo-stability. J Phys D: Appl Phys. 2019;53:035101.
  • Zhao Y, M A, Nardes KZ. Effective hole extraction using MoOx-Al contact in perovskite CH3NH3PbI3 solar cells. Appl Phys Lett. 2014;104:213906.
  • Svanstrom S, Jaobsson TJ, Boschloo G, et al. Degradation mechanism of silver metal deposited on lead halide perovskites. ACS Appl Mater Interfaces. 2020;12(6):7212.
  • Bi D, Tress W, Dar MI, et al. Efficient luminescent solar cells based on tailored mixed-cation perovskites. Sci Adv. 2016;2:e1501170.
  • Saliba M, Matsui T, Seo JY, et al. Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency. Energy Environ Sci. 2016;9:1989.
  • Philippe B, Park B, Lindblad R. Chemical and electronic structure characterization of lead halide perovskites and stability behavior under different exposures-A photoelectron spectroscopy investigation. Chem Mater. 2015;27(5):1720.
  • Jung MC, Raga SR, Ono LK, et al. Substantial improvement of perovskite solar cells stability by pinhole-free hole transport layer with doping engineering. Sci Rep. 2015;5:9863.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.