Publication Cover
Materials Technology
Advanced Performance Materials
Volume 37, 2022 - Issue 14
88
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Anti-cancer effects of PLGA nanoparticles loaded with anbarnesa smoke organic extract on A2780 ovarian cancer cell line

, , ORCID Icon &
Pages 3140-3151 | Received 05 Jul 2021, Accepted 30 Sep 2022, Published online: 10 Oct 2022

References

  • Ansari M, Eslami H, Javadpour S, et al. Cancer therapy using a targeted magnetoliposomes encapsulated doxorubicin assisted ultrasound. In: Materials technology (United Kingdom). 2021. p. 1–8.
  • Yousefi E, Javadpour S, Ansari M,et al. Sonodynamic therapy of cancer using a novel TiO2-based nanoparticles. United Kingdom: Materials Technology; 2021. p. 1–8.
  • Pande VV, Borawake DD, Halnor VV. Fabrication and characterization of gemcitabine hydrochloride loaded mesoporous silica nanoparticles as theranostics platform for pancreatic cancer. Mater Technol. 2018;33(13):815–824.
  • Vafadar A, Shabaninejad Z, Movahedpour A, et al. Quercetin and cancer: new insights into its therapeutic effects on ovarian cancer cells. Cell Biosci. 2020;10(1):1–17.
  • Parvaresh A, Razavi R, Rafie N,et al., Quercetin and ovarian cancer: an evaluation based on a systematic review. Journal of research in medical sciences: the official journal of Isfahan University of Medical Sciences, 2016. 21.
  • Zhang J, Misra R. Nanomaterials in microfluidics for disease diagnosis and therapy development. Mater Technol. 2019;34(2):92–116.
  • Chandrasekaran S, Misra R. Photonic antioxidant ZnS(Cd) nanorod synthesis for drug carrier and bioimaging. Mater Technol. 2013;28(4):228–233.
  • Yeom Y-E, Kim MA, Kim J, et al. Anti-inflammatory effects of the extract of Solanum nigrum L. on an acute ear edema mouse model. Mater Technol. 2019;34(14):851–857.
  • Thomasset SC, Berry DP, Garcea G, et al. Dietary polyphenolic phytochemicals—promising cancer chemopreventive agents in humans? A review of their clinical properties. Int J Cancer. 2007;120(3):451–458.
  • Sadat Khadem F, Es-Haghi A, Homayouni Tabrizi M, et al. The loaded ferula assa-foetida seed essential oil in solid lipid nanoparticles (FSEO-SLN) as the strong apoptosis inducer agents in human NTERA-2 embryocarcinoma cells. Mater Technol. 2022;37(9):1120–1128.
  • Dossus L, Kaaks R. Nutrition, metabolic factors and cancer risk. Best Pract Res Clin Endocrinol Metab. 2008;22(4):551–571.
  • Chacko T, Menon A, Nair SV,et al. Cytotoxic and antitumor activity of the extract of Clerodendrum infortunatum: a mechanistic study. Am J Phytomed Clin Therapeut. 2015;2:145–158.
  • Mohagheghzadeh A, Faridi P, Shams-Ardakani M, et al. Medicinal smokes. J Ethnopharmacol. 2006;108(2):161–184.
  • Talebi A, Harigh E, Dehdashtian E,et al. Evaluation of the effect of smoke of Anbar Nasara (donkey dung) extract on staphylococcus aureus and Bacillus subtilis (Iran). 2017.
  • Ahmadian-Attari MM, Amrollahi Z, Safavi Momeni P, et al. Chemical constituents of donkey dung (anbarnasara): questioning the recent claims concerning therapeutic effects. Int J Enteric Pathog. 2019;7(1):19–22.
  • Sadat Khadem F, Es-haghi A, Homayouni Tabrizi M,et al. The loaded Ferula assa-foetida seed essential oil in solid lipid nanoparticles (FSEO-SLN) as the strong apoptosis inducer agents in human NTERA-2 embryocarcinoma cells. United Kingdom: Materials Technology; 2021. p. 1–9.
  • Khshemat V, Homayouni Tabrizi M, Neamati A,et al. Fabrication, characterisation, and biological properties of chitosan nanoparticles containing rapeseed pollen extract (RPE) on the MCF-7 cell line. United Kingdom: Materials Technology; 2021. p. 1–11.
  • Bao W, Ma H, Wang N, et al. pH-responsive mesoporous silica drug delivery system for targeted cancer chemotherapy. Mater Technol. 2021;36(5):308–316.
  • Li C, Wang J, Wang Y, et al. Recent progress in drug delivery. Acta Pharm Sin B. 2019;9(6):1145–1162.
  • Kim C-K, Lim S-J. Recent progress in drug delivery systems for anticancer agents. Arch Pharm Res. 2002;25(3):229–239.
  • Alhajamee M, Marai Kh, Al abbas,et al. Co-encapsulation of curcumin and tamoxifen in lipid-chitosan hybrid nanoparticles for cancer therapy. In: Materials Technology (United Kingdom). 2021. p. 1–12.
  • Chen H, Lui YS, Zhao J, et al. Effect of solvent composition of electrospun PLGA fibers on paclitaxel release. Mater Technol. 2018;33(11):716–722.
  • Sridhar T. Nanobioceramic coatings for biomedical applications. Mater Technol. 2010;25(3–4):184–195.
  • Danhier F, Ansorena E, Silva JM, et al. PLGA-based nanoparticles: an overview of biomedical applications. J Control Release. 2012;161(2):505–522.
  • Bala I, Hariharan S, Kumar MR. PLGA nanoparticles in drug delivery: the state of the art. Critical Reviews™ in Therapeutic Drug Carrier Systems. 2004;21(5): 387–422.
  • Khshemat V, Homayouni-Tabrizi M, Neamati A, et al. Fabrication, characterisation, and biological properties of chitosan nanoparticles containing rapeseed pollen extract (RPE) on the MCF-7 cell line. Mater Technol. 2022;37(9):1075–1085.
  • Amini-Fazl MS, Mobedi H. Investigation of mathematical models based on diffusion control release for paclitaxel from in-situ forming PLGA microspheres containing HSA microparticles. Mater Technol. 2020;35(1):50–59.
  • Shabestarian H, Homayouni Tabrizi M, Movahedi M, et al. Putative mechanism for cancer suppression by PLGA nanoparticles loaded with Peganum harmala smoke extract. J Microencapsul. 2021;38(5):324–337.
  • Sainz V, Peres C, Ciman T, et al. Optimization of protein loaded PLGA nanoparticle manufacturing parameters following a quality-by-design approach. RSC Adv. 2016;6(106):104502–104512.
  • Mishra M, Verma S, Rai V,et al. Curcuma raktakanda induces apoptosis and suppresses migration in cancer cells: role of reactive oxygen species. Biomolecules. 2019;9(4):159.
  • Thein-Han W, Misra R. Biomimetic chitosan–nanohydroxyapatite composite scaffolds for bone tissue engineering. Acta Biomater. 2009;5(4):1182–1197.
  • Ashna M, Es-haghi A, Karimi Noghondar M,et al. Greener synthesis of cerium oxide nanoemulsion using pollen grains of brassica napus and evaluation of its antitumour and cytotoxicity properties. In: Materials Technology (United Kingdom). 2020. p. 1–8.
  • Harlev E, Nevo E, Lansky EP, et al. Anticancer attributes of desert plants: a review. Anticancer Drugs. 2012;23(3):255–271.
  • Shafiee HA, Shafiee H, Azimi S, et al. Evaluation of cytotoxic effects of anbarnesa on fibroblast L929: can it be used as a mouthwash? Ancient Science of Life. 2014;33(4):203.
  • Alhajamee M, Marai K, Al Abbas SMN, et al. Co-encapsulation of curcumin and tamoxifen in lipid-chitosan hybrid nanoparticles for cancer therapy. Mater Technol. 2022;37(9):1183–1194.
  • Mokhtareeizadeh Z, Homayouni Tabrizi M. Optimisation of ferula assa-foetida-loaded PLGA nanoparticles synthesised and evaluation of putative mechanism for anticancer properties. Mater Technol. 2022;37(11):1954–1967.
  • Shabestarian H, Homayouni Tabrizi M, Movahedi M,et al. Putative mechanism for cancer suppression by PLGA nanoparticles loaded with peganum harmala smoke extract. J Microencapsul. 2021;38: 1–14.
  • Misra R. Core–shell magnetic nanoparticle carrier for targeted drug delivery: challenges and design. Mater Technol. 2010;25(3–4):118–126.
  • Guo Q, Cao H, Li XH, et al. Thermosensitive hydrogel drug delivery system containing doxorubicin loaded CS–GO nanocarriers for controlled release drug in situ. Mater Technol. 2015;30(5):294–300.
  • Koopaei MN, Khoshayand MR, Mostafavi SH,et al. Docetaxel loaded PEG-PLGA nanoparticles: optimized drug loading, in-vitro cytotoxicity and in-vivo antitumor effect. IJPR. 2014;13(3):819.
  • Jin C, Bai L, Wu H, et al. Cytotoxicity of paclitaxel incorporated in PLGA nanoparticles on hypoxic human tumor cells. Pharm Res. 2009;26(7):1776–1784.
  • Badran MM, Alomrani AH, Harisa GI, et al. Novel docetaxel chitosan-coated PLGA/PCL nanoparticles with magnified cytotoxicity and bioavailability. Biomed Pharmacother. 2018;106:1461–1468.
  • Afshari M, Derakhshandeh K, Hosseinzadeh L. Characterisation, cytotoxicity and apoptosis studies of methotrexate-loaded PLGA and PLGA-PEG nanoparticles. J Microencapsul. 2014;31(3):239–245.
  • Silva AM, Alvarado HL, Abrego G, et al. In vitro cytotoxicity of oleanolic/ursolic acids-loaded in PLGA nanoparticles in different cell lines. Pharmaceutics. 2019;11(8):362.
  • Acharya D, Satapathy S, Thathapudi JJ,et al. Biogenic synthesis of silver nanoparticles using marine algae cladophora glomerata and evaluation of apoptotic effects in human colon cancer cells. In: Materials technology (United Kingdom). 2020. p. 1–12.
  • Mutha RE, Surana SJ. Ultrasonic frequency based development of chrysin nanoparticles: assessment of bioavailability, anti-cancer activity and stability. Mater Technol. 2018;33(7):495–505.
  • Suresh K, Carino K, Johnston L, et al. California dreaming: new insights into endothelial dysfunction in ards. In: Active caspase 3 plays a role in the recovery of the endothelial cell barrier from thrombin-induced disruption, in C71. United States: American Thoracic Society, 2018. A5720–A5720.
  • Almnhawy M, Jabur M, Alhajamee M,et al. PLGA-based nano-encapsulation of Trachyspermum ammi seed essential oil (TSEO-PNP) as a safe, natural, efficient, anticancer compound in human HT-29 colon cancer cell line. United States: Nutr Cancer. 2020;73: 1–13.
  • Idriss HT, Naismith JH. TNFα and the TNF receptor superfamily: structure‐function relationship (s). Microsc Res Tech. 2000;50(3):184–195.
  • Hafner A, Bulyk ML, Jambhekar A, et al. The multiple mechanisms that regulate p53 activity and cell fate. Nat Rev Mol Cell Biol. 2019;20(4):199–210.
  • Ratan ZA, Haidere MF, Nurunnabi M, et al. Green chemistry synthesis of silver nanoparticles and their potential anticancer effects. Cancers (Basel). 2020;12(4):855.
  • Mao X, Seidlitz E, Truant R, et al. Re-expression of TSLC1 in a non-small-cell lung cancer cell line induces apoptosis and inhibits tumor growth. Oncogene. 2004;23(33):5632–5642.
  • Qiang H, Chang Q, Xu J, et al. New advances in antiangiogenic combination therapeutic strategies for advanced non-small cell lung cancer. J Cancer Res Clin Oncol. 2020;146(3):631–645.
  • Nascimento C, Gameiro A, Ferreira J, et al. Diagnostic value of VEGF-A, VEGFR-1 and VEGFR-2 in feline mammary carcinoma. Cancers (Basel). 2021;13(1):117.
  • Liu J, Zhang X, Li G, et al. Anti-angiogenic activity of bevacizumab-bearing dexamethasone-loaded PLGA nanoparticles for potential intravitreal applications. Int J Nanomedicine. 2019;14:8819.
  • Yang Y, Wang F, Zheng K, et al. Injectable PLGA/Fe3O4 implants carrying cisplatin for synergistic magnetic hyperthermal ablation of rabbit VX2 tumor. PLoS One. 2017;12(5):e0177049.
  • Amoozgar Z, Wang L, Brandstoetter T, et al. Dual-layer surface coating of PLGA-based nanoparticles provides slow-release drug delivery to achieve metronomic therapy in a paclitaxel-resistant murine ovarian cancer model. Biomacromolecules. 2014;15(11):4187–4194.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.