Publication Cover
Materials Technology
Advanced Performance Materials
Volume 38, 2023 - Issue 1
1,233
Views
8
CrossRef citations to date
0
Altmetric
Research Article

Towards strength-ductility synergy in nanosheets strengthened titanium matrix composites through laser power bed fusion of MXene/Ti composite powder

, , , ORCID Icon, , & show all
Article: 2181680 | Received 01 Feb 2023, Accepted 14 Feb 2023, Published online: 08 Mar 2023

References

  • Hayatb MD, Singh H, He Z, et al. Titanium metal matrix composites: an overview. Compos Part A Appl Sci Manuf. 2019;121:418–16.
  • Huang LJ, An Q, Geng L, et al. Multiscale architecture and superior high-temperature performance of discontinuously reinforced titanium matrix composites. Adv Mater. 2020;33(6):2000688.
  • Munir KS, Li YC, Qian M, et al. Identifying and understanding the effect of milling energy on the synthesis of carbon nanotubes reinforced titanium metal matrix composites. Carbon. 2016;99:384–397.
  • Li GX, Munir K, Wen C, et al. Machinablility of titanium matrix composites (TMC) reinforced with multiwalled carbon nanotubes. J Manuf Processes. 2020;56:131–146.
  • Wang S, Huang LJ, Zhang R, et al. Enhancing ductility of titanium matrix composites by multimodal α-grains. Scr Mater. 2019;170:161–165.
  • Dong LL, Lu JW, Fu YQ, et al. Carbonaceous nanomaterial reinforced Ti-6Al-4V matrix composites: properties, interfacial structures and strengthening mechanisms. Carbon. 2020;164:272–286.
  • Williams JC, Starke EA. Progress in structural materials for aerospace systems. Acta Materialia. 2003;51(19):5775–5779.
  • Wang S, An Q, Zhang R, et al. Microstructure characteristics and enhanced properties of network-structured TiB/(TA15-Si) composites via rolling deformation at different temperatures. Mater Sci Eng A. 2022;829:142176.
  • Yan Q, Chen B, Cao L, et al. Improved mechanical properties in titanium matrix composites reinforced with quasi-continuously networked graphene nanosheets and in-situ formed carbides. J Mater Sci Technol. 2022;96:85–93.
  • Li Z, Zhang Y, Zhang Z, et al. A nanodispersion-in-nanograins strategy for ultra-strong, ductile and stable metal nanocomposites. Nat Commun. 2022;13(1):5581.
  • Huang LJ, Geng L, Peng H-X. Microstructurally inhomogeneous composites: is a homogeneous reinforcement distribution optimal? Pro Mater Sci. 2015;71:93–168.
  • Li SF, Cui JY, Yang LF, et al. In situ growth of carbon nanotubes on Ti powder for strengthening of Ti matrix composite via nanotube-particle dual morphology. Metall Mater Trans A. 2020;51(11):5932–5944.
  • Zhang R, Huang LJ, Zhao XX, et al. Influence of deformation parameters and network structure to the microstructure evolution and flow stress of TiBw/Ti64 composite. Mater Sci Eng A. 2021;809:140997.
  • Munir KS, Li Y, Liang D, et al. Effect of dispersion method on the deterioration, interfacial interactions and re-agglomeration of carbon nanotubes in titanium metal matrix composites. Mater Des. 2015;88:138–148.
  • Hayat MD, Singh H, Miodowski A, et al. Fabrication, microstructure and mechanical properties of in situ formed particle reinforced titanium matrix composite. Int J Refract Metals Hard Mater. 2020;92:105257.
  • Liu Y, Dong LL, Lu JW, et al. Microstructure and mechanical properties of SiC nanowires reinforced titanium matrix composites. J Alloys Compd. 2020;819:152953.
  • Munir KS, Kingshott P, Wen C. Carbon nanotube reinforced titanium metal matrix composites prepared by powder metallurgy—a review. Critl Rev Solid State Mater Sci. 2015;40(1):38–55.
  • Yan Q, Chen B, Zhang B, et al. Inhibiting the interfacial reaction between few-layered graphene and titanium via SiC nanoparticle decoration. J Alloys Compd. 2022;893:162183.
  • Zhang FM, Wang J, Liu TF, et al. Enhanced mechanical properties of few-layer graphene reinforced titanium alloy matrix nanocomposites with a network architecture. Mater Des. 2020;186:108330.
  • Cao HC, Liang YL. The microstructures and mechanical properties of graphene-reinforced titanium matrix composites. J Alloys Compd. 2020;812:152057.
  • Zhang CJ, Kong FT, Xiao SL, et al. Evolution of microstructure and tensile properties of in situ titanium matrix composites with volume fraction of (TiB + TiC) reinforcements. Mater Sci Eng A. 2012;548:152–160.
  • Dong LL, Zhang W, Fu YQ, et al. Synergetic enhancement of strength and ductility for titanium-based composites reinforced with nickel metallized multi-walled carbon nanotubes. Carbon. 2021;184:583–595.
  • Mu XN, Cai HN, Zhang HM, et al. Uniform dispersion and interface analysis of nickel coated graphene nanoflakes/pure titanium matrix composites. Carbon. 2018;137:146–155.
  • Mu XN, Cai HN, Zhang HM, et al. Uniform dispersion of multi-layer graphene reinforced pure titanium matrix composites via flake powder metallurgy. Mater Sci Eng A. 2018;725:541–548.
  • Wang FC, Zhang ZH, Sun YJ, et al. Rapid and low temperature spark plasma sintering synthesis of novel carbon nanotube reinforced titanium matrix composites. Carbon. 2015;95:396–407.
  • Misra RDK. Strong and ductile texture-free ultrafine-grained magnesium alloy via three-axial forging. Mater Lett. 2023;331:133443.
  • Kondoh K, Threrujirapapong T, Umeda J, et al. High-temperature properties of extruded titanium composites fabricated from carbon nanotubes coated titanium powder by spark plasma sintering and hot extrusion. Compos Sci Technol. 2012;72(11):1291–1297.
  • Li YX, Huang SH, Wei CJ, et al. Adhesion of two-dimensional titanium carbides (MXenes) and graphene to silicon. Nat Commun. 2019;10(1):3014.
  • Ji B, Fan SW, Ma X, et al. Electromagnetic shielding behavior of heat-treated Ti3C2Tx MXene accompanied by structural and phase changes. Carbon. 2020;165:150–162.
  • Xia Y, Mathis TS, Zhao MQ, et al. Thickness-independent capacitance of vertically aligned liquid-crystalline MXenes. Nature. 2018;557(7705):409–412.
  • Wang L, Liu ZQ, Li SF, et al. Few-layered Ti3C2 MXene-coated Ti–6Al–4V composite powder for high-performance Ti matrix composite. Compos Commun. 2022;33:101238.
  • Li HL, Yang ZH, Cai DL, et al. Microstructure evolution and mechanical properties of selective laser melted bulk-form titanium matrix nanocomposites with minor B4C additions. Mater Des. 2020;185:108245.
  • Liu Y, Li SF, Misra RDK, et al. Planting carbon nanotubes within Ti-6Al-4V to make high-quality composite powders for 3D printing high-performance Ti-6Al-4V matrix composites. Scr Mater. 2020;183:6–11.
  • Dong YP, Li YL, Ebel T, et al. Cost-affordable, high-performance Ti–TiB composite for selective laser melting additive manufacturing. J Mater Res. 2020;35(15):1922–1935.
  • Zhu Y, Zhang K, Meng Z, et al. Ultrastrong nanotwinned titanium alloys through additive manufacturing. Nat Mater. 2022;21(11):1258–1262.
  • Xu W, Brandt M, Sun S, et al. Additive manufacturing of strong and ductile Ti–6Al–4V by selective laser melting via in situ martensite decomposition. Acta Materialia. 2015;85:74–84.
  • Zhou WW, Zhou ZX, Fan YC, et al. Significant strengthening effect in few-layered MXene-reinforced Al matrix composites. Mater Res Lett. 2021;9(3):148–154.
  • Herzog D, Seyda V, Wycisk E, et al. Additive manufacturing of metals. Acta Materialia. 2016;117:371–392.
  • Arkhurst BM, Bae JH, Na MY, et al. Effect of tellurium on the microstructure and mechanical properties of Fe-14Cr oxide-dispersion-strengthened steels produced by additive manufacturing. J Mater Sci Technol. 2021;95:114–126.
  • Li SF, Yang YF, Misra RDK, et al. Interfacial/intragranular reinforcement of titanium-matrix composites produced by a novel process involving core-shell structured powder. Carbon. 2020;164:378–390.
  • Li SF, Tan C, Liu Y, et al. Designing core-shell C-coated Ti-6Al-4V powders for high-performance nano-sized TiC platelets/particles synergistically reinforced Ti-6Al-4V composites. Materialia. 2018;2:68–72.
  • Luo SD, Li Q, Tian J, et al. Self-assembled, aligned TiC nanoplatelet-reinforced titanium composites with outstanding compressive properties. Scr Mater. 2013;69(1):29–32.
  • Ren YM, Lin X, Fu X, et al. Microstructure and deformation behavior of Ti-6Al-4V alloy by high-power laser solid forming. Acta Materialia. 2017;132:82–95.
  • Zhang TL, Huang ZH, Yang T, et al. In situ design of advanced titanium alloy with concentration modulations by additive manufacturing. Science. 2021;374(6566):478–482.
  • Wozniak J, Jastrzębska A, Olszyna A. Challenges and opportunities in tailoring MAX phases as a starting materials for MXenes development. Mater Technol Adv Perform Mater. 2022;37(11):1639–1650.
  • ASTM International. ASTM F1108-14, Standard Specification for Titanium-6Aluminum-4Vanadium Alloy Castings for Surgical Implants (UNS R56406). West Conshohocken PA: ASTM International; 2014.
  • Misra RDK, Challa VSA, Injeti VSY. Phase reversion-induced nanostructured austenitic alloys: an overview. Mater Technol Adv Perform Mater. 2022;37(7):437–449.
  • Yang YF, Geng K, Li SF, et al. Highly ductile hypereutectic Al-Si alloys fabricated by selective laser melting. J Mater Sci Technol. 2022;110:84–95.
  • Chen GX, Zhai Q, Ma ZH, et al. Effect of Cr content on microstructure, mechanical properties and corrosion behavior of Ti6Al4V alloy produced by selective laser melting. Mater Technol Adv Perform Mater. 2022;37(9):1062–1074.