Publication Cover
Materials Technology
Advanced Performance Materials
Volume 38, 2023 - Issue 1
657
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Effects of secondary carbide addition on the mechanical properties of (Ti1-xTMx)C-based 20Ni cermets (TM = V, Mo, and W): a study combining ab initio calculation and experimental results

, , , , , & ORCID Icon show all
Article: 2251293 | Received 08 Aug 2023, Accepted 20 Aug 2023, Published online: 28 Aug 2023

References

  • Wu X, Shen J, Jiang F, et al. Study on the oxidation of WC-Co cemented carbide under different conditions. Int J Refract Hard Met. 2021;94:105381–10. doi: 10.1016/j.ijrmhm.2020.105381
  • Jiang W, Lu H, Liu X, et al. Outstanding high-temperature oxidation-and wear-resistance of WC based cermets. J Mater Sci Technol. 2023;155:33–46. doi: 10.1016/j.jmst.2022.12.071
  • Seck GS, Hache E, Barnet C. Potential bottleneck in the energy transition: the case of cobalt in an accelerating electro-mobility world. Resour Policy. 2022;75:102516–102532. doi: 10.1016/j.resourpol.2021.102516
  • Padmakumar M, Dinakaran, Dinakaran D. A review on cryogenic treatment of tungsten carbide (WC-Co) tool material. Mater Manuf Process. 2021;36(6):637–659. doi: 10.1080/10426914.2020.1843668
  • Ettmayer P, Kolaska H, Lengauer W, et al. Ti (C, N) cermets—metallurgy and properties. Int J Refract Hard Met. 1995;13(6):343–351. doi: 10.1016/0263-4368(95)00027-G
  • Han C, Den C, Zhao D, et al. Milling performance of TiC–Ni cermet tools toughened by TiN nanoparticles. Int J Refract Hard Met. 2012;30(1):12–15. doi: 10.1016/j.ijrmhm.2011.06.005
  • Lee T, Jeong W, Chung S, et al. Effects of TiC on the microstructure refinement and mechanical property enhancement of additive manufactured Inconel 625/TiC metal matrix composites fabricated with novel core-shell composite powder. J Mater Sci. 2023;164:13–26. doi: 10.1016/j.jmst.2023.04.033
  • Kim J, Ahn S, Kang S. Effect of the complete solid-solution phase on the microstructure of Ti(CN)-based cermet. Int J Refract Hard Met. 2009;27(2):224–228. doi: 10.1016/j.ijrmhm.2008.07.012
  • Liu N, Xu Y, Li H, et al. Effect of nano-micro TiN addition on the microstructure and mechanical properties of TiC based cermets. J Eur Ceram Soc. 2002;22(13):2409–2414. doi: 10.1016/S0955-2219(02)00010-9
  • Kim S, Min KH, Kang S. Rim structure in Ti(C0.7 N0.3)-WC-Ni cermets. Journal Of The American Ceramic Society. 2003;86(10):1761–1766. doi: 10.1111/j.1151-2916.2003.tb03551.x
  • Kwon WT, Park JS, Kim S-W, et al. Effect of WC and group IV carbides on the cutting performance of Ti(C, N) cermet tools. Int J Mach Tools Manuf. 2004;44:341–346. doi: 10.1016/j.ijmachtools.2003.10.023
  • Park S, and Kang S. Toughened ultra-fine (Ti, W)(Cn)–Ni cermets. Scripta Materialia. 2005;52(2):129–133. doi: 10.1016/j.scriptamat.2004.09.017
  • Liu N, Han CL, and Ying WH, et al. Microstructure, hardness and fracture toughness of TiC based cermets with nano TiN powders addition. Powder Metall. 2007;50(2):142–147. doi: 10.1179/174329007X186534
  • Hafner J. Ab‐initio simulations of materials using VASP: density‐functional theory and beyond. J Comput Chem. 2008;29(13):2044–2078. doi: 10.1002/jcc.21057
  • Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B. 1999;59(3):1758–1775. doi: 10.1103/PhysRevB.59.1758
  • Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett. 1996;77(18):3865–3868. doi: 10.1103/PhysRevLett.77.3865
  • Hammer B, Hansen LB, Nørskov JK. Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals. Phys Rev B. 1999;59:7413–7421. doi: 10.1103/PhysRevB.59.7413
  • Kim J, Kim M, Roh K-M, et al. Bond characteristics, mechanical properties, and high-temperature thermal conductivity of (Hf1−x Tax)C composites. J Am Ceram Soc. 2019;102(10):6298–6308. doi: 10.1111/jace.16466
  • Kim K, Zhou B-C, and Wolverton C. First-principles study of crystal structure and stability of T1 precipitates in Al-Li-Cu alloys. Acta Mater. 2018;145:337–346. doi: 10.1016/j.actamat.2017.12.013
  • Wisesa P, McGill KA, and Mueller T.Efficient generation of generalized monkhorst-pack grids through the use of informatics. Phys Rev B. 2016;93(15):155109–155118. doi: 10.1103/PhysRevB.93.155109
  • Voight W. Lehrbuch der kristallphysik. Teubner: Leipzig; 1928.
  • Soderholm K-J. Review of the fracture toughness approach. Dent Mater. 2010;26(2):e63–e77. doi: 10.1016/j.dental.2009.11.151
  • Hussainova I, Kubarsepp J, and Pirso J. Mechanical properties and features of erosion of cermets. Wear. 2001;250(1–12):818–825. doi: 10.1016/S0043-1648(01)00737-2
  • Gao F. Theoretical model of intrinsic hardness. Phys Rev B. 2006;73(13):132104–132107. doi: 10.1103/PhysRevB.73.132104
  • Rajabi A, Ghazali M, Daud A. Chemical composition, microstructure and sintering temperature modifications on mechanical properties of TiC-based cermet–A review. Mater Des. 2015;67:95–106. doi: 10.1016/j.matdes.2014.10.081
  • Seo M, Kim J, Kang S. Effect of carbon content on the microstructure and properties of (Ti0.7W0.3) C-Ni cermet. Int J Refract Hard Met. 2011;29(4):424–428. doi: 10.1016/j.ijrmhm.2011.01.004
  • Kerdsongpanya S, Alling B, Eklund P. Effect of point defects on the electronic density of states of ScN studied by first-principles calculations and implications for thermoelectric properties. Phys Rev B. 2012;86(19):195140–195146. doi: 10.1103/PhysRevB.86.195140
  • Cankurtaran M, Onder M, Celik H, et al. Energy bands, carrier density and Fermi energy in bi in a uniform magnetic field. Phys Solid State. 1987;20(25):3875–3886. doi: 10.1088/0022-3719/20/25/015
  • Holzwarth U, Gibson N. The Scherrer equation versus the ‘Debye-Scherrer equation’. Nat Nanotech. 2011;6(9):534. doi: 10.1038/nnano.2011.145
  • Ag E, Ea C. Fracture toughness determinations by indentation. J American Ceramic Society. 1976;59(7–8):371–372. doi: 10.1111/j.1151-2916.1976.tb10991.x
  • Anstis G, Chantikul P, Lawn BR, et al. A critical evaluation of indentation techniques for measuring fracture toughness: I, direct crack measurements. J Am Ceram Soc. 1981;64:533–538. doi: 10.1111/j.1151-2916.1981.tb10320.x
  • Jiang D, Li S, Hu W, et al. Theoretical prediction of mechanical and thermodynamic properties of TiMC2 (M = Hf, Mo, Nb and W) ceramics: very promising excellent TiC-based solid solution materials. Int J Refract Hard Met. 2023;114:106240–110651. doi: 10.1016/j.ijrmhm.2023.106240
  • Wu L, Yao T, Wang Y, et al. Understanding the mechanical properties of vanadium carbides: nano-indentation measurement and first-principles calculations. J Alloys Compd. 2013;548:60–64. doi: 10.1016/j.jallcom.2012.09.014
  • Liu Y, Jiang Y, Feng J, et al. Elasticity, electronic properties and hardness of MoC investigated by first principles calculations. Physica B Condens Matter. 2013;419:45–50. doi: 10.1016/j.physb.2013.03.016
  • Herrmann M, Raethel J, Berger L-M. On the possibility of the incorporation of al into the WC lattice. Int J Refract Hard Met. 2013;41:495–500. doi: 10.1016/j.ijrmhm.2013.06.008
  • Liu Y, Jiang Y, Zhou R, et al. Mechanical properties and chemical bonding characteristics of WC and W2C compounds. Ceram Int. 2014;40(2):2891–2899. doi: 10.1016/j.ceramint.2013.10.022
  • Xiang M, Song M, Zhu Q, et al. Facile synthesis of high‐melting point spherical TiC and TiN powders at low temperature. J Am Ceram Soc. 2020;103(2):889–898. doi: 10.1111/jace.16810
  • Savin A, Nesper R, Wengert S, et al. ELF: the electron localization function. Angew Chem Int Ed. 1997;36(17):1808–1832. doi: 10.1002/anie.199718081
  • Kim YK, Shim J-H, Cho YW, et al. Mechanochemical synthesis of nanocomposite powder for ultrafine (Ti, Mo)C–Ni cermet without core-rim structure. Int J Refract Hard Met. 2004;22:193–196. doi: 10.1016/j.ijrmhm.2004.06.004
  • Al-Jumaili BE, Rzaij JM, Ibraheam A. Nanoparticles of CuO thin films for room temperature NO2 gas detection: annealing time effect. Mater Today Proc. 2021;42:2603–2608. doi: 10.1016/j.matpr.2020.12.588
  • Ollilainen V, Kasprzak W, Holappa L. The effect of silicon, vanadium and nitrogen on the microstructure and hardness of air cooled medium carbon low alloy steels. J Mater Process Technol. 2003;134(3):405–412. doi: 10.1016/S0924-0136(02)01131-7
  • Münch B, Martin LH, and Leemann A. Segmentation of elemental EDS maps by means of multiple clustering combined with phase identification. J Microsc. 2015;260(3):411–426. doi: 10.1111/jmi.12309
  • Chen M, Zhang X, and Xiao X, et al. Effect of secondary carbides on the core-rim structure evolution of TiC-based cermets. Mater Res Express. 2021;8:076501. doi: 10.1088/2053-1591/ac0d92
  • Kim J, Seo M, Kang S. Microstructure and mechanical properties of Ti-based solid-solution cermets. Mater Sci Eng A. 2011;528(6):2517–2521. doi: 10.1016/j.msea.2010.11.076
  • Kim J, Kang S. Microstructure evolution and mechanical properties of (Ti0.93W0.07) C–xWC–20Ni cermets. Mater Sci Eng A. 2011;528(7–8):3090–3095. doi: 10.1016/j.msea.2010.12.038
  • Kim J, Kang S. Elastic and thermo-physical properties of TiC, TiN, and their intermediate composition alloys using ab initio calculations. J Alloys Compd. 2012;528:20–27. doi: 10.1016/j.jallcom.2012.02.124
  • Sun W, Ehteshami H, Korzhavyi PA. Structure and energy of point defects in TiC: an ab initiostudy. Phys Rev B. 2015;91(13):134111–134121. doi: 10.1103/PhysRevB.91.134111
  • Chang R, Graham LJ. Low‐temperature elastic properties of ZrC and TiC. J Appl Phys. 1966;37(10):3778–3783. doi: 10.1063/1.1707923