Publication Cover
Materials Technology
Advanced Performance Materials
Volume 38, 2023 - Issue 1
399
Views
0
CrossRef citations to date
0
Altmetric
Rapid Communication

The triboelectric sensor based on PDMS/SGO for human running posture and physical fitness health monitoring

, &
Article: 2254613 | Received 02 Jun 2023, Accepted 26 Jul 2023, Published online: 16 Oct 2023

References

  • Gao S, He T, Zhang Z, et al. A motion capturing and energy harvesting hybridized lower-limb system for rehabilitation and sports applications. Adv Sci. 2021;8(20):2101834. doi: 10.1002/advs.202101834
  • Cheng B, Wu P. Scalable Fabrication of Kevlar/Ti 3 C 2 T x MXene intelligent wearable fabrics with multiple sensory capabilities. ACS Nano. 2021;15(5):8676–9. doi: 10.1021/acsnano.1c00749
  • Dong K, Peng X, Wang ZL. Fiber/fabric‐based piezoelectric and triboelectric nanogenerators for flexible/stretchable and wearable electronics and artificial intelligence. Adv Mater. 2020;32(5):1902549. doi: 10.1002/adma.201902549
  • Slade P, Kochenderfer MJ, Delp SL, et al. Sensing leg movement enhances wearable monitoring of energy expenditure. Nat Commun. 2021;12(1):4312. doi: 10.1038/s41467-021-24173-x
  • Jin L, Xiao X, Deng W, et al. Manipulating relative permittivity for high-performance wearable triboelectric nanogenerators. Nano Lett. 2020;20(9):6404–6411. doi: 10.1021/acs.nanolett.0c01987
  • Peng Y, Xu Z, Wang M, et al. Investigation of frequency-up conversion effect on the performance improvement of stack-based piezoelectric generators. Renewable Energy. 2021;172:551–563. doi: 10.1016/j.renene.2021.03.064
  • Jouhara H, Żabnieńska-Góra A, Khordehgah N, et al. Thermoelectric generator (TEG) technologies and applications. Int J Thermofluids. 2021;9:100063. doi: 10.1016/j.ijft.2021.100063
  • Wang HL, Guo ZH, Zhu G, et al. Boosting the power and lowering the impedance of triboelectric nanogenerators through manipulating the permittivity for wearable energy harvesting. ACS Nano. 2021;15(4):7513–7521. doi: 10.1021/acsnano.1c00914
  • Luo J, Gao W, Wang ZL. The triboelectric nanogenerator as an innovative technology toward intelligent sports. Adv Mater. 2021;33(17):2004178. doi: 10.1002/adma.202004178
  • Wang ZL. Triboelectric nanogenerator (TENG)—sparking an energy and sensor revolution. Adv Energy Mater. 2020;10(17):2000137. doi: 10.1002/aenm.202000137
  • Wen Z, Yang Y, Sun N, et al. A wrinkled PEDOT: PSS film based stretchable and transparent triboelectric nanogenerator for wearable energy harvesters and active motion sensors. Adv Funct Mater. 2018;28(37):1803684. doi: 10.1002/adfm.201803684
  • Zhao Z, Zhou L, Li S, et al. Selection rules of triboelectric materials for direct-current triboelectric nanogenerator. Nat Commun. 2021;12(1):4686. doi: 10.1038/s41467-021-25046-z
  • Shen F, Zhang D, Zhang Q, et al. Influence of temperature difference on performance of solid-liquid triboelectric nanogenerators. Nano Energy. 2022;99:107431. doi: 10.1016/j.nanoen.2022.107431
  • Kim WG, Kim DW, Tcho IW, et al. Triboelectric nanogenerator: structure, mechanism, and applications. ACS Nano. 2021;15(1):258–287. doi: 10.1021/acsnano.0c09803
  • Xin C, Li Z, Zhang Q, et al. Investigating the output performance of triboelectric nanogenerators with single/double-sided interlayer. Nano Energy. 2022;100:107448. doi: 10.1016/j.nanoen.2022.107448
  • Dudem B, Dharmasena RDIG, Riaz R, et al. Wearable triboelectric nanogenerator from waste materials for autonomous information transmission via Morse code. ACS Appl Mater Inter. 2022;14(4):5328–5337. doi: 10.1021/acsami.1c20984
  • Yao L, Zhang H, Jiang J, et al. Recent progress in sensing technology based on triboelectric nanogenerators in dynamic behaviors. Sensors. 2022;22(13):4837. doi: 10.3390/s22134837
  • Li M, Lu HW, Wang SW, et al. Filling the gap between topological insulator nanomaterials and triboelectric nanogenerators. Nat Commun. 2022;13(1):938. doi: 10.1038/s41467-022-28575-3
  • Su Y, Chen G, Chen C, et al. Self-powered respiration monitoring enabled by a triboelectric nanogenerator. Adv Mater. 2021;33(35):2101262. doi: 10.1002/adma.202101262
  • Xiao X, Chen G, Libanori A, et al. Wearable triboelectric nanogenerators for therapeutics. Trend Chem. 2021;3(4):279–290. doi: 10.1016/j.trechm.2021.01.001
  • Zhou Y, Deng W, Xu J, et al. Engineering materials at the nanoscale for triboelectric nanogenerators. Cell Rep Physical Sci. 2020;1(8):100142. doi: 10.1016/j.xcrp.2020.100142
  • Zou Y, Xu J, Fang Y, et al. A hand-driven portable triboelectric nanogenerator using whirligig spinning dynamics. Nano Energy. 2021;83:105845. doi: 10.1016/j.nanoen.2021.105845
  • Song Y, Shi Z, Hu GH, et al. Recent advances in cellulose-based piezoelectric and triboelectric nanogenerators for energy harvesting: a review. J Mater Chem A. 2021;9(4):1910–1937. doi: 10.1039/D0TA08642H
  • Zhang C, Liu Y, Zhang B, et al. Harvesting wind energy by a triboelectric nanogenerator for an intelligent high-speed train system. ACS Energy Lett. 2021;6(4):1490–1499. doi: 10.1021/acsenergylett.1c00368
  • Zhou Q, Pan J, Deng S, et al. Triboelectric nanogenerator-based sensor systems for chemical or biological detection. Adv Mater. 2021;33(35):2008276. doi: 10.1002/adma.202008276
  • Jiang Y, Dong K, An J, et al. UV-protective, self-cleaning, and antibacterial nanofiber-based triboelectric nanogenerators for self-powered human motion monitoring. ACS Appl Mater Inter. 2021;13(9):11205–11214. doi: 10.1021/acsami.0c22670
  • Chen H, Lu Q, Cao X, et al. Natural polymers based triboelectric nanogenerator for harvesting biomechanical energy and monitoring human motion. Nano Res. 2022;15(3):2505–2511. doi: 10.1007/s12274-021-3764-6
  • Zhao T, Fu Y, Sun C, et al. Wearable biosensors for real-time sweat analysis and body motion capture based on stretchable fiber-based triboelectric nanogenerators. Biosens Bioelectron. 2022;205:114115. doi: 10.1016/j.bios.2022.114115
  • Yan L, Mi Y, Lu Y, et al. Weaved piezoresistive triboelectric nanogenerator for human motion monitoring and gesture recognition. Nano Energy. 2022;96:107135. doi: 10.1016/j.nanoen.2022.107135
  • Zhang H, Zhang P, Zhang W. A high-output performance mortise and tenon structure triboelectric nanogenerator for human motion sensing. Nano Energy. 2021;84:105933. doi: 10.1016/j.nanoen.2021.105933
  • Dong L, Wang M, Wu J, et al. Stretchable, adhesive, self-healable, and conductive hydrogel-based deformable triboelectric nanogenerator for energy harvesting and human motion sensing. ACS Appl Mater Inter. 2022;14(7):9126–9137. doi: 10.1021/acsami.1c23176
  • Yang Y, Hou XJ, Geng WP, et al. Human movement monitoring and behavior recognition for intelligent sports using customizable and flexible triboelectric nanogenerator. Sci China Technol Sci. 2022;65(4):826–836. doi: 10.1007/s11431-021-1984-9
  • Xu Z, Zhang D, Cai H, et al. Performance enhancement of triboelectric nanogenerators using contact-separation mode in conjunction with the sliding mode and multifunctional application for motion monitoring. Nano Energy. 2022;102:107719. doi: 10.1016/j.nanoen.2022.107719
  • Paosangthong W, Torah R, Beeby S. Recent progress on textile-based triboelectric nanogenerators. Nano Energy. 2019;55:401–423. doi: 10.1016/j.nanoen.2018.10.036
  • Paosangthong W, Wagih M, Torah R, et al. Textile-based triboelectric nanogenerator with alternating positive and negative freestanding woven structure for harvesting sliding energy in all directions. Nano Energy. 2022;92:106739. doi: 10.1016/j.nanoen.2021.106739
  • Huang P, Wen DL, Qiu Y, et al. Textile-based triboelectric nanogenerators for wearable self-powered microsystems. Micromachines. 2021;12(2):158. doi: 10.3390/mi12020158
  • Liu R, Li M. A textile-based triboelectric nanogenerator for long jump monitoring. Mater Technol. 2022;37(12):2360–2367. doi: 10.1080/10667857.2022.2035145
  • Seung W, Yoon HJ, Kim TY, et al. Dual friction mode textile‐based tire cord triboelectric nanogenerator. Adv Funct Mater. 2020;30(39):2002401. doi: 10.1002/adfm.202002401
  • Jiang D, Lian M, Xu M, et al. Advances in triboelectric nanogenerator technology—applications in self-powered sensors, internet of things, biomedicine, and blue energy. Adv Compos Hybrid Mater. 2023;6(2):57. doi: 10.1007/s42114-023-00632-5
  • Shin SY, Saravanakumar B, Ramadoss A, et al. Fabrication of PDMS-based triboelectric nanogenerator for self-sustained power source application. Int J Energy Res. 2016;40(3):288–297. doi: 10.1002/er.3376
  • Dudem B, Huynh ND, Kim W, et al. Nanopillar-array architectured PDMS-based triboelectric nanogenerator integrated with a windmill model for effective wind energy harvesting. Nano Energy. 2017;42:269–281. doi: 10.1016/j.nanoen.2017.10.040
  • Shi K, Zou H, Sun B, et al. Dielectric modulated cellulose paper/PDMS-Based triboelectric nanogenerators for wireless transmission and electropolymerization applications. Adv Funct Mater. 2020;30(4):1904536. doi: 10.1002/adfm.201904536