Publication Cover
Materials Technology
Advanced Performance Materials
Volume 38, 2023 - Issue 1
403
Views
0
CrossRef citations to date
0
Altmetric
Review

A perspective in the understanding of strength–toughness combination during processing of engineering ferrous alloys

Article: 2278000 | Received 17 Oct 2023, Accepted 27 Oct 2023, Published online: 09 Nov 2023

References

  • Ning H, Li X, Meng L, et al. Effect of Ni and Mo on microstructure and mechanical properties of grey cast iron. Mater Technol; Adv Perform Mater. 2023;38(1):2172991. doi: 10.1080/10667857.2023.2172991
  • Guo L, Su X, Dai L, et al. Strain ageing embrittlement behaviour of X80 self-shielded flux-cored girth weld metal. Mater Technol Adv Perform Mater. 2023;38(1):2164978. doi: 10.1080/10667857.2023.2164978
  • Yang C, Xu H, Wang Y, et al. Hot tearing analysis and process optimisation of the fire face of al-cu alloy cylinder head based on MAGMA numerical simulation. Mater Technol Adv Perform Mater. 2023;38(1):2165245. doi: 10.1080/10667857.2023.2165245
  • Li Q, Zuo H, Feng J, et al. Strain rate and temperature sensitivity on the flow behaviour of a duplex stainless steel during hot deformation. Mater Technol Adv Perform Mater. 2023;38(1):2166216. doi: 10.1080/10667857.2023.2166216
  • Misra RDK. Strong and ductile texture-free ultrafine-grained magnesium alloy via three-axial forging. Mater Lett. 2023;31:133443. doi: 10.1016/j.matlet.2022.133443
  • Misra RDK. Enabling manufacturing of multi-axial forging-induced ultrafine-grained strong and ductile magnesium alloys: a perspective of process-structure-property paradigm. Mater Technol. 2023;38(1):2189769. doi: 10.1080/10667857.2023.2189769
  • Li SF, Misra RDK, Liu ZQ. Towards strength-ductility synergy in nanosheets strengthened titanium matrix composites through laser power bed fusion of MXene/Ti composite powder. Mater Technol. 2023;38:2181680. doi: 10.1080/10667857.2023.2181680
  • Niu G, Zurpb H, Guyuen M, et al. Superior fracture toughness in a high-strength austenitic steel with heterogeneous lamellar microstructure. Acta Materialia. 2022;226:117462. doi: 10.1016/j.actamat.2022.117642
  • Misra RDK, Challa VSA, Injeti VSY. Injeti, advanced performance materials. Mater Technol. 2022;37(7):437–18. doi: 10.1080/10667857.2022.2065621
  • Misra RDK. Proceeddings of International Conference on thermo-mechanical simulation and processing of steels conference, Materials and Manufacturing Processes. 2010;25:60–71.
  • Misra RDK, Balasubramanian TV, Rama Rao P. AES analysis of fracture toughness variation with heat treatment in an 18 Ni (250 grade) maraging steel. J Mater Sci Lett. 1987;6(2):125–130. doi: 10.1007/BF01728960
  • Rama Rao P. Private communication – unpublished study conducted at DMRL. Hyderabad, India; 1987.
  • Misra RDK, Prasad CY, Balasubramanian TV, et al. Effect of phosphorus segregation on impact toughness variation in 17-4 precipitation hardened stainless steel. Scr Metall Mater. 1986;20(5):713. doi: 10.1016/0036-9748(86)90497-7
  • Misra RDK, Prasad CY, Balasubramanian TV, et al. On variation of impact toughness in 17-4 precipitation hardened stainless steels. Scr Metall Mater. 1987;21:1067. doi: 10.1016/0036-9748(87)90251-1
  • Misra RDK, Prasad CY, Balasubramanian TV, et al. On the role of molybdenum on impact toughness of precipitation hardened stainless steel. Scr Metall Mater. 1986;20(10):1339. doi: 10.1016/0036-9748(86)90091-8
  • Misra RDK, Prasad CY, Balasubramanian TV, et al. Effect of post-aging quenching treatment on impact toughness of 17-4 precipitation hardened stainless steel. Scr Metall Mater. 1988;22:1323. doi: 10.1016/S0036-9748(88)80155-8
  • Misra RDK, Rama Rao P. An analysis of grain boundary cohesion in precipitation hardened stainless steel. Scr Metall Mater. 1993;28(12):1531–1536. doi: 10.1016/0956-716X(93)90587-I
  • Erhart H, Grabke HJ. Equilibrium segregation of phosphorus at grain boundaries of fe–P, fe–C–P, fe–Cr–P, and fe–Cr–C–P alloys. Metal Sci. 1981;15(9):401. doi: 10.1179/030634581790426877
  • Rice JR, Wang JS. Embrittlement of interfaces by solute segregation. MateSci Eng A. 1989;107:23. doi: 10.1016/0921-5093(89)90372-9
  • Olsen, in innovations in ultra-high strength steel technology. In: G.B. Olson, M. Azrin and E.S. Wright, editors. Proceedings of the 34th Sagamore Army Research Conference. 1990. https://api.semanticsscholar.org/Corpus ID: 136229017
  • Misra RDK, Balsubramanian TV, Rao PR. On interaction amongst trace and alloying elements at the grain boundaries of low alloy steel. Acta Metallurgica et Materialia. 1987;35:2995. doi: 10.1016/0001-6160(87)90298-7
  • Misra RDK, Balsubramanian TV. Cooperative and site-competitive interaction processes at the grain boundaries of NiCrMoV low alloy steel. Acta Metallurgica et Materialia. 1989;37:1475. doi: 10.1016/0001-6160(89)90179-X
  • Misra RDK, Balsubramanian TV. Stress enhanced grain boundary segregation of impurity elements in a low alloy steel. Acta Metallurgica et Materialia. 1990;38:1263. doi: 10.1016/0956-7151(90)90197-O
  • Misra RDK, Balasubramanian TV. Effects of microstructure on grain boundary segregation processes in low alloy steels. Acta Metallurgica et Materialia. 1990;38(11):2357. doi: 10.1016/0956-7151(90)90103-N
  • Misra RDK, Rama Rao P. Grain boundary segregation in a low alloy steel under tensile loading conditions. Acta Metallurgica et Materialia. 1992;40:1223. doi: 10.1016/0956-7151(92)90420-J
  • Misra RDK, Rama Rao P. Influence of tensile stress on behaviour of grain boundary segregants and related interactions between trace and solute elements in 2·6Ni–Cr–Mo–V low alloy steel. Mater Sci Technol. 1993;9(6):497. doi: 10.1179/mst.1993.9.6.497
  • Misra RDK. Issues concerning the effects of applied tensile stress on intergranular segregation in low alloy steels. Acta Materialia. 1996;44(3):885. doi: 10.1016/1359-6454(95)00249-9
  • Misra RDK. Grain boundary segregation and fracture resistance of engineering steels. Surf Interface Anal. 2001;31(7):509. doi: 10.1002/sia.1079
  • Misra RDK, Weatherly GC, Embury JD. Kinetics of cold work embrittlement of interstitial-free steels. Mater Sci Technol. 2000;16:9. doi: 10.1179/026708300773002618
  • Misra RDK. Temperature-time dependence of grain boundary segregation of phosphorus in interstitial-free steels. J Mater Sci. 2002;21:1275.
  • Misra RDK, Weatherly GC, Hartmann JE, et al. Ultrahigh strength hot rolled microalloyed steels – microstructural aspects of development. Mater Sci Technol. 2001;17(9):1119. doi: 10.1179/026708301101511040
  • Ray RK, Jonas JJ. Transformation textures in steels. Inter Metallurgical Rev. 1990;35(1):1. doi: 10.1179/095066090790324046
  • Lequeu P, Jonas JJ. Modeling of the plastic anisotropy of textured sheet. Metall Trans A. 1988;19A(1):105. doi: 10.1007/BF02669819
  • Misra RDK, Anderson JP. Evolution of textures in hot rolled Nb-Ti and V-Nb microalloyed steels. Mater Sci Technol. 2002;18:1513. doi: 10.1179/026708302225007286
  • Inagaki H, Kurihara K, Kozasu I. Influence of crystallographic texture on the strength and toughness of control-rolled high tensile strength steel. Trans Iron Steel Inst Jpn. 1977;17(2):75. doi: 10.2355/isijinternational1966.17.75
  • Hashimoto S, Yakushuji T, Kashima T, et al. Proceedings Of International Conference On Physical Metallurgy Of Thermomechanical Processing Of Steels And Other Metals. 1988;2:652.
  • Shanmugam S, Misra RDK, Mannering T, et al. Impact toughness and microstructure relationship in niobium and vanadium microalloyed steels processed with varied cooling rates to similar yield strength. Mater Sci Eng A. 2006;437(2):436. doi: 10.1016/j.msea.2006.08.007
  • Matsuo M, Saki T, Suga Y. Origin and development of through-the-thickness variations of texture in the processing of grain-oriented silicon steel. Metall Trans A. 1986;17A(8):1313. doi: 10.1007/BF02650112
  • Ohmori Y, Honeycombe RWK. Proceedings of ICSTIS (suppl.). Trans Iron Steel Inst Jpn. 1971;11:1160.
  • Yamane T, Hiyayuki K, Kawazu Y, et al. Improvement of toughness of low carbon steels containing nitrogen by fine microstructures. J Mater Sci. 2002;37(18):3875. doi: 10.1023/A:1019695104094
  • Joung Sim H, Bum Lee Y, Nam WJ. Ductility of hypo-eutectoid steels with ferrite-pearlite structures. J Mater Sci. 2004;39:1849. doi: 10.1023/B:JMSC.0000016201.77933.c2
  • Song R, Ponge D, Raabe D. Improvement of the work hardening rate of ultrafine grained steels through second phase particles. Scripta Meterialia. 2005;52:1075. doi: 10.1016/j.scriptamat.2005.02.016
  • Shanmugam S, Misra RDK, Hartmann JE, et al. Microstructure of high strength niobium containing pipeline steel. Mater Sci Eng A. 2006;441:215. doi: 10.1016/j.msea.2006.08.017
  • Shanmugam S, Ramisetti NK, Misra RDK, et al. Microstructure and high strength–toughness combination of a new 700MPa Nb-microalloyed pipeline steel. Mater Sci Eng A. 2008;478(1–2):26. doi: 10.1016/j.msea.2007.06.003
  • Nayak SS, Misra RDK, Hartmann J, et al. Microstructure and properties of low manganese and niobium containing HIC pipeline steel. Mater Sci Eng A. 2008;494(1–2):456. doi: 10.1016/j.msea.2008.04.038
  • Nayak SS, Anamolu R, Misra RDK, et al. Microstructure-hardness relationship in quenched and partitioned medium-carbon and high-carbon steels containing silicon. Mater Sci Eng A. 2008;498:442. doi: 10.1016/j.msea.2008.08.028
  • Misra RDK, Nayak S, Venkatsurya P, et al. Nanograined/ultrafine-grained (NG/UFG) structure and tensile deformation behavior of shear reversion induced 301 austenitic stainless steel. Metall Mater Trans A. 2010;41A(8):2162–2174. doi: 10.1007/s11661-010-0230-6
  • Misra RDK, Nayak S, Mali S, et al. Microstructure and deformation behavior of phase-reversion induced nanograined/ultrafine-grained (NG/UFG) austenitic stainless steel. Metall Mater Trans A. 2009;40(10):2498–2509. doi: 10.1007/s11661-009-9920-3
  • Misra RDK, Nayak S, Mali S, et al. On the significance of nature of strain-induced martensite on phase-reversion induced nanograined/ultrafine-grained (NG/UFG) austenitic stainless steel. Metall Mater Trans A. 2010;41(1):3–12. doi: 10.1007/s11661-009-0072-2
  • Misra RDK, Challa VSA, Venkatasurya PKC, et al. Interplay between grain structure, deformation mechanism and austenite stability in phase-reversion-induced nanograined/ultrafine-grained austenitic ferrous alloy. Acta Materialia. 2015;84:339–348. doi: 10.1016/j.actamat.2014.10.038
  • Misra RDK, Injeti VYS, Somani MC. The significance of deformation mechanisms on the fracture behavior of phase reversion-induced nanostructured austenitic stainless steel. Sci Rep. 2018;8(1):1–13. doi: 10.1038/s41598-018-26352-1