Publication Cover
Materials Technology
Advanced Performance Materials
Volume 39, 2024 - Issue 1
168
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Exploring the inhibition effect of tri-sodium phosphate concentrations on corrosion in Mg-sn-ca-mn anode for magnesium batteries

, , & ORCID Icon
Article: 2357513 | Received 02 Apr 2024, Accepted 15 May 2024, Published online: 24 May 2024

References

  • Han L, Zhang Y, Guo Y, et al. Electrochemical behaviors and discharge performance of Mg-sn binary alloys as anodes for Mg-air batteries. Mater Res Express. 2021;8(12):126531. doi: 10.1088/2053-1591/ac4439
  • Chen X, Wei S, Tong F, et al. Electrochemical performance of Mg-Sn alloy anodes for magnesium rechargeable battery. Electrochimica Acta. 2021;398:139336. doi: 10.1016/j.electacta.2021.139336
  • Wang N, Wang R, Feng Y, et al. Discharge and corrosion behavior of Mg-Li-Al-Ce-Y-Zn alloy as the anode for Mg-air battery. Corros Sci. 2016;112:13–14. doi: 10.1016/j.corsci.2016.07.002
  • Zhang A, Kang R, Wu L, et al. A new rare-earth-free Mg-Sn-Ca-Mn wrought alloy with ultra-high strength and good ductility. Mater Sci Eng A. 2019;754:269–274. doi: 10.1016/j.msea.2019.03.095
  • Sun C, Wang H, Yang F, et al. Layered buserite Mg-mn oxide cathode for aqueous rechargeable Mg-ion battery. J Magnesium Alloys. 2023;11(3):840–850. doi: 10.1016/j.jma.2022.11.005
  • Shamsudin SR, Rahmat A, Isa MC, et al. Electrochemical corrosion behavior of Mg-(Ca, Mn) sacrificial anodes. In: AMR. Vol. 795. 2013. p. 530–534. doi: 10.4028/www.scientific.net/amr.795.530
  • Karudesh E, Francis AL, Sreekanth D, et al. Effect of zinc on electrochemical corrosion behavior of Mg-1Sn alloy as anode for Mg batteries. Mater Today Proc. 2023. doi: 10.1016/j.matpr.2023.03.244
  • Tong F, Chen X, Wei S, et al. Microstructure and battery performance of Mg-zn-sn alloys as anodes for magnesium-air battery. J Magnesium Alloys. 2021;9(6):1967–1976. doi: 10.1016/j.jma.2021.08.022
  • Udhayan R, Bhatt DP. On the corrosion behavior of magnesium and its alloys using electrochemical techniques. J Power Sources. 1996;63(1):103–107. doi: 10.1016/S0378-7753(96)02456-1
  • Li Q, Xiong W, Yu S, et al. Effect of Gd content on the discharge and electrochemical behaviors of the magnesium alloy AZ31 as an anode for Mg-air battery. J Mater Sci. 2021;56(22):12789–12802. doi: 10.1007/s10853-021-06135-2
  • Guadarrama-Munoz F, Mendoza-Flores J, Duran-Romero R, et al. Electrochemical study on magnesium anodes in NaCl and CaSO4–mg (OH) 2 aqueous solutions. Electrochimica Acta. 2006;51(8–9):1820–1830. doi: 10.1016/j.electacta.2005.02.144
  • Kumar GG, Munichandraiah N. Effect of plasticizers on magnesium-poly (ethyleneoxide) polymer electrolyte. J Electroanal Chem. 2000;495(1):42–50. doi: 10.1016/S0022-0728(00)00404-6
  • Wang N, Wang R, Peng C, et al. Discharge behavior of Mg-Al-Pb and Mg-Al-Pb-In alloys as anodes for Mg-air battery. Electrochimica Acta. 2014;149:193–205. doi: 10.1016/j.electacta.2014.10.053
  • Medhashree H, Shetty AN. Synergistic inhibition effect of trisodium phosphate and sodium benzoate with sodium dodecyl benzene sulphonate on the corrosion of Mg-Al-Zn-Mn alloy in 30% ethylene glycol containing chloride ions. J Adhes Sci Technol. 2019;33(5):523–548. doi: 10.1080/01694243.2018.1543529
  • Deyab MA. Decyl glucoside as a corrosion inhibitor for magnesium–air battery. J Power Sources. 2016;325:98–103. doi: 10.1016/j.jpowsour.2016.06.006
  • Zhao Y, Huang G, Zhang C, et al. Effect of phosphate and vanadate as electrolyte additives on the performance of Mg-air batteries. Mater Chem Phys. 2018;218:256–261. doi: 10.1016/j.matchemphys.2018.07.037
  • Hou L, Dang N, Yang H, et al. A combined inhibiting effect of sodium alginate and sodium phosphate on the corrosion of magnesium alloy AZ31 in NaCl solution. J Electrochem Soc. 2016;163(8):C486. doi: 10.1149/2.0941608jes
  • Quraishi MA, Singh A, Singh VK, et al. Green approach to corrosion inhibition of mild steel in hydrochloric acid and sulphuric acid solutions by the extract of murraya koenigii leaves. Mater Chem Phys. 2010;122(1):114–122. doi: 10.1016/j.matchemphys.2010.02.066
  • Chen X, Liao Q, Le Q, et al. The influence of samarium (Sm) on the discharge and electrochemical behaviors of the magnesium alloy AZ80 as an anode for the Mg-air battery. Electrochimica Acta. 2020;348:136315. doi: 10.1016/j.electacta.2020.136315
  • Wang N, Li W, Huang Y, et al. Wrought Mg-Al-Pb-RE alloy strips as the anodes for Mg-air batteries. J Power Sources. 2019;436:226855. doi: 10.1016/j.jpowsour.2019.226855
  • Li Y, Ma J, Wang G, et al. Effect by adding Ce and in to Mg–6Al alloy as anode on performance of Mg-air batteries. Mater Res Express. 2019;6(6):066315. doi: 10.1088/2053-1591/ab0fb6
  • Rajendrachari S. Investigation of electrochemical pitting corrosion by linear sweep voltammetry: a fast and robust approach. In: Voltammetry. London, UK: IntechOpen; 2018. p. 77–90.
  • Tong F, Chen X, Teoh TE, et al. Mg–Sn alloys as anodes for magnesium-air batteries. J Electrochem Soc. 2021;168(11):110531. doi: 10.1149/1945-7111/ac3716
  • Altun H, Sen S. Studies on the influence of chloride ion concentration and pH on the corrosion and electrochemical behavior of AZ63 magnesium alloy. Mater Design. 2004;25(7):637–643. doi: 10.1016/j.matdes.2004.02.002
  • Zhao MC, Liu M, Song GL, et al. Influence of pH and chloride ion concentration on the corrosion of Mg alloy ZE41. Corros Sci. 2008;50(11):3168–3178. doi: 10.1016/j.corsci.2008.08.023
  • Chen J, Wei S, Tan L, et al. Effects of solution treatment on mechanical properties and degradation of Mg-2Zn-0.5 Nd-0.5 Zr alloy. Mater Technol. 2019;34(10):592–601. doi: 10.1080/10667857.2019.1603657
  • Weaver MR, Maldonado AJ, Banuelos JL, et al. On precipitation hardening behaviour in a triaxial forged Mg-2Zn-2Gd alloy and relationship to mechanical properties. Mater Technol. 2023;38(1):2215038. doi: 10.1080/10667857.2023.2215038
  • Wang D, Jing Y, Gao Y, et al. Enhanced mechanical properties of AZ91 magnesium alloy by asynchronously large-strain high-efficiency rolling with bimodal grain structure. J Mater Res Technol. 2023;27:4430–4439. doi: 10.1016/j.jmrt.2023.10.205
  • Wang D, Lin B, Jing Y, et al. Deformation mechanism of AZ91 alloy during compression at different temperatures. Mater Test. 2023;65(1):87–93. doi: 10.1515/mt-2022-0239
  • Wang D, Jing Y, Lin B, et al. On the structure, mechanical behavior, and deformation mechanism of AZ91 magnesium alloy processed by symmetric and asymmetric rolling. Mater Charact. 2022;194:112444. doi: 10.1016/j.matchar.2022.112444
  • Zhuk A, Belyaev G, Borodina T, et al. Magnesium–air battery with increased power using commercial alloy anodes. Energies. 2024;17(2):400. doi: 10.3390/en17020400
  • Cheng W, Hao X, Shangguan F, et al. Electrochemical behavior and discharge performance of dilute Mg-Bi-based alloy as an anode for primary Mg-air battery. Mater Charact. 2024;209:113688. doi: 10.1016/j.matchar.2024.113688
  • Shi XB, Cheng WL, Yu LF, et al. Electrochemical behaviors and discharge performance of the low-alloyed Mg-Ag alloy as anode for Mg-air battery. Acta Metall Sin. 2024:0–0. doi: 10.11900/0412.1961.2023.00332
  • Ding DY, DU YH, Tang MF, et al. Corrosion and discharge behavior of Mg− Zn− Mn− Nd alloys as primary Mg− air batteries anode. Trans Nonferrous Met Soc China. 2023;33(7):2014–2029. doi: 10.1016/S1003-6326(23)66240-5