Publication Cover
Materials Technology
Advanced Performance Materials
Volume 39, 2024 - Issue 1
90
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Tinospora malabarica leaf extract fractions-derived silver nanoparticles and their spectral characterisation: evaluation of their toxicity properties against agricultural pests Spodoptera litura and Helicoverpa armigera

, , , , , , , & show all
Article: 2361221 | Received 11 Feb 2024, Accepted 23 May 2024, Published online: 11 Jun 2024

References

  • Elanchezhiyan K, Gokulakrishnan J, Deepa J, et al. Botanical extracts of Tinosporacrispa (Menispermaceae) and Psidium guajava (Myrtaceae) against important agricultural polyphagous field pest armyworm, Spodoptera litura (Fab.) (Lepidoptera: Noctuidae). Int J Rec Sci Res. 2015;6(2):2703–12.
  • Mahesh Babu S, Baranitharan M, Dhanasekaran S, et al. Chemical compositions, antifeedant and larvicidal activity of Pongamia pinnata (L.) against polyphagous field pest, Spodoptera litura. Int J Zool Invest. 2016;2(1):48–57.
  • Backiyaraj M, Elumalai A, Kasinathan D, et al. Bioefficacy of Caesalpinia bonducella extracts against Tobacco cutworm, Helicoverpa armigera (Hub.) (Lepidoptera: Noctuidae). J Coast Life Med. 2014;2:685–693.
  • Baranitharan M, Alarifi S, Alkahtani S, et al. Phytochemical analysis and fabrication of silver nanoparticles using Acacia catechu: an efficacious ecofriendly control tool against selected polyphagous insect pests. Saudi J Biol Sci. 2021;28(1):148–156. doi: 10.1016/j.sjbs.2020.09.024
  • Baranitharan M, Dhanasekaran S, Murugan K, et al. Chemical composition and laboratory investigation of Melissa officinalis essential oil against human malarial vector mosquito, Anopheles stephensi, L. (Diptera: Culicidae). J Coast Life Med. 2016;114:1817–1827. doi: 10.12980/jclm.4.2016J6-174
  • Benelli G. Plant-mediated synthesis of nanoparticles: a newer and safer tool against mosquito-borne diseases? Asian Pac J Trop Biomed. 2016;6(4):353–354. doi: 10.1016/j.apjtb.2015.10.015
  • Mathiyazhagan M, Baranitharan M, Rajaganesh K, et al. Acute toxicity of Cistanche tubulosa methanol extract: a potential novel insecticidal compounds against malaria-transmitting mosquito. Biochem Cell Archiv. 2023;23(2). doi: 10.51470/bca.2023.23.2.1163
  • Thushimenan BJ, Baranitharan M. Laboratory investigation of Terminalia arjuna and Trachyspermum roxburghianum against groundnut pest, Helicoverpa armigera. Asia J Pharmaceut Clinic Res. 2016;9(1):232–236.
  • Thushimenan BJ. Baranitharan M. Antifeedant and toxicity of indigenous medicinal plants extracts against Spodoptera litura (Fab) (Lepidoptera: Noctuidae). Int J Zool Appl Bioscien. 2016;1(1):106–110.
  • Benelli G, Kadaikunnan S, Alharbi NS, et al. Biophysical characterization of Acacia caesia-fabricated silver nanoparticles: effectiveness on mosquito vectors of public health relevance and impact on non-target aquatic biocontrol agents. Environ Sci Pollut Res. 2018;25(11):10228–10242. doi: 10.1007/s11356-017-8482-y
  • El-Wakeil NE. Botanical pesticides and their mode of action. Gesunde Pflanzen. 2013;65(4):125–149. doi: 10.1007/s10343-013-0308-3
  • Dhanasekaran S, Baranitharan M, Muthulingam M, et al. Studies on the impact of medicinal plants in relation to malaria vector control against Anopheles stephensi. Innoriginal Int J Scien. 2018;5(3):12–14. Available from: https://www.innoriginal.com/index.php/iijs/article/view/131
  • Ahana AK, Prakash LH. Conservation of ret medicinal plants W.S.R to Tinospora Malabarica (Lam.) Hook.F. & Thoms. J Pharma Cog Phyto Chem. 2018;P3:409–412.
  • Minjas JN, Sarda RK. Laboratory observations on the toxicity of Swartzia madagascariensis (Leguminosae) extract to mosquito larvae. Trans R Soc Trop Med. 1986;80(3):460–461. doi: 10.1016/0035-9203(86)90345-7
  • Senthilkumar PK, Reetha D. Screening of antimicrobial properties of certain Indian medicinal plants. J Phytol. 2009;1:193–198.
  • Baranitharan M, Dhanasekaran S, Murugan K, et al. Coleus aromaticus leaf extract fractions: A source of novel ovicides, larvicides and repellents against Anopheles, Aedes and Culex mosquito vectors? Process Saf Environ Prot. 2017;106:23–33. doi: 10.1016/j.psep.2016.12.003
  • Subash B, Vijayan P, Baranitharan M. Biosynthesis of silver nanoparticles using Hygrophila auriculata: A novel route of malarial fever vector mosquito control. Int J Scient Technol Res. 2019;8(12):4010–4018. ISSN: 2277-8616.
  • Abbott WS. A method of computing the effectiveness of an insecticide. J Econ Entomol. 1925;18(2):265–267. doi: 10.1093/jee/18.2.265a
  • Bessey OA, Lowry OH, Brock MJ. A method for the rapid determination of alkaline phosphatase with five cubic millimeters of serum. J Biol Chem. 1946;164(1):321–329. doi: 10.1016/S0021-9258(18)43072-4
  • Shiosaka T, Okuda H, Fujii S. Mechanism of the phosphorylation of thymidine by the culture filtrate of Clostridium perfringens and rat liver extract. Biochimica Biophys Acta. 1971;246(2):171–183. doi: 10.1016/0005-2787(71)90125-0
  • Snedecor GW, Cochran WG. Statistical methods. Eighth ed. Ames (IA): Iowa State University Press; 1989.
  • Ahmed M, Peiwen Q, Gu Z, et al. Insecticidal activity and biochemical composition of Citrullus colocynthis, Cannabis indica and Artemisia argyi extracts against cabbage aphid (Brevicoryne brassicae L.). Sci Rep. 2020;10(1). doi: 10.1038/s41598-019-57092-5
  • Mungenge C, Zimudzi C, Zimba M, et al. Phytochemical screening, cytotoxicity and insecticidal activity of the fish poison plant Synaptolepis alternifoliaoliv (Thymelaeaceae). J Pharm Phytochem. 2014;2:15–19.
  • Riaz B, Zahoor MK, Zahoor MA, et al. Toxicity, phytochemical composition, and enzyme inhibitory activities of some indigenous weed plant extracts in fruit fly, Drosophila melanogaster. Evid Based Complement Alternat Med. 2018;2018:1–11. doi: 10.1155/2018/2325659
  • Morejón B, Pilaquinga F, Domenech F, et al. Larvicidal activity of silver nanoparticles synthesized using extracts of Ambrosia arborescens (Asteraceae) to control Aedes aegypti L. (Diptera: Culicidae). J Nanotechnol. 2018;2018:1–8. doi: 10.1155/2018/6917938
  • Sutthanont N, Attrapadung S, Nuchprayoon S. Larvicidal activity of synthesized silver nanoparticles from Curcuma zedoaria essential oil against Culex quinquefasciatus. Insect. 2019;10(1):1–11. doi: 10.3390/insects10010027
  • Mohammed SSS, Lawrance AV, Sampath S, et al. Facile green synthesis of silver nanoparticles from sprouted Zingiberaceae species: spectral characterisation and its potential biological applications. Mater Technol. 2020;37(8):533–546. doi: 10.1080/10667857.2020.1863571
  • Kavitha G, Gokulakrishnan J, Baranitharan M. Biosynthesis of silver nanoparticles using Argemone mexicana: a novel route of malarial fever vector mosquito control. Int J Advanc Res Biol Scien. 2019;6(8):148–158. doi: 10.22192/ijarbs
  • Elamawi RM, L-Harbi RE, Hendi AA. Biosynthesis and characterization of silver nanoparticles using Trichoderma longibrachiatum and their effect on phytopathogenic fungi. Egypt J Biol Pest Control. 2018;28(1):1–11. doi: 10.1186/s41938-018-0028-1
  • Pilaquinga F, Morejón B, Ganchala D, et al. Green synthesis of silver nanoparticles using Solanum mammosum L. (Solanaceae) fruit extract and their larvicidal activity against Aedes aegypti L. (Diptera: Culicidae). PLoS One. 2019;14(10):e0224109. doi: 10.1371/journal.pone.0224109
  • Harikrishnan A, Ramalingam B, Nadeem A, et al. Eco-friendly synthesis of zinc oxide nanoparticles (ZnOnps) from piper betel leaf extract: spectral characterization and its application on plant growth parameters in maize, fenugreek and red gram. Mat Technol. 2024;39(1):2298547. doi: 10.1080/10667857.2023.2298547
  • Ajitha B, Reddy YAK, Reddy PS. Biogenic nano-scale silver particles by Tephrosia purpurea leaf extract and their inborn antimicrobial activity. Spectro Acta Part A. 2014;121:164–172. doi: 10.1016/j.saa.2013.10.077
  • Suresh S, Karthikeyan S, Jayamoorthy K. FTIR and multivariate analysis to study the effect of bulk and nano copper oxide on peanut plant leaves. J Sci Adv Mater Dev. 2016;1(3):343–350. doi: 10.1016/j.jsamd.2016.08.004
  • Santhosh SB, Yuvarajan R, Natarajan D. Annona muricata leaf extract-mediated silver nanoparticles synthesis and its larvicidal potential against dengue, malaria and filariasis vector. Parasitol Res. 2015;114(8):3087–3096. doi: 10.1007/s00436-015-4511-2
  • Elumalai K, Velmurugan S. Green synthesis, characterization and antimicrobial activities of zinc oxide nanoparticles from the leaf extract of Azadirachta indica (L.). Appl Surface Sci. 2015;345:329–336. doi: 10.1016/j.apsusc.2015.03.176
  • Erdogan O, Abbak M, Demirbolat GM, et al. Green synthesis of silver nanoparticles via Cynara scolymus leaf extracts: The characterization, anticancer potential with photodynamic therapy in MCF7 cells. PLoS One. 2019;14(6):1–15. doi: 10.1371/journal.pone.0216496
  • Rautela A, Rani J, Debnath M. Green synthesis of silver nanoparticles from Tectona grandis seeds extract: characterization and mechanism of antimicrobial action on different microorganisms. J Anal Sci Technol. 2019;10(1):1–10. doi: 10.1186/s40543-018-0163-z
  • Xun Y, Muhammad Shahid A, Yinying L, et al. Efficacy of entomopathogenic nematodes against the Tobacco cutworm, Spodoptera litura (Lepidoptera: Noctuidae). J Econ Entomol. 2020;113(1):64–72. doi: 10.1093/jee/toz262
  • Muhammad J, Nazeer Ahmad J, Jalal Arif M, et al. Characterization of Ocimum basilicum synthesized silver nanoparticles and its relative toxicity to some insecticides against tobacco cutworm, Spodoptera litura Feb. (Lepidoptera; Noctuidae). Ecotoxicol Environ Saf. 2021;218:112278. doi: 10.1016/j.ecoenv.2021.112278
  • Valan Arasu M, Abdullah Al-Dhabi N, Saritha V, et al. Antifeedant, larvicidal and growth inhibitory bioactivities of novel polyketide metabolite isolated from Streptomyces sp. AP-123 against Helicoverpa armigera and Spodoptera litura. BMC Microbiol. 2013. doi: 10.1186/1471-2180-13-105
  • Sunaina S, Devi M, Sharma G, et al. Larvicidal, growth inhibitory and biochemical effects of soil bacterium, Pseudomonas sp. EN4 against Spodoptera litura (Fab.) (Lepidoptera: Noctuidae). BMC Microbiol. 2023;23(1):95. doi: 10.1186/s12866-023-02841-w
  • Manimegalai T, Raguvaran K, Kalpana M, et al. Green synthesis of silver nanoparticle using Leonotis nepetifolia and their toxicity against vector mosquitoes of Aedes aegypti and Culex quinquefasciatus and agricultural pests of Spodoptera litura and Helicoverpa armigera. Environ Sci Pollut Res Int. 2020;27(34):43103–43116. doi: 10.1007/s11356-020-10127-1
  • Ranganathan M, Ramkumar G, Kumarasamy S, et al. Synergism and toxicity of iron nanoparticles derived from Trigonella foenum-graecum against pyrethroid treatment in S. litura and H. armigera (Lepidoptera: Noctuidae). Environ Res. 2023;231:116079. doi: 10.1016/j.envres.2023.116079
  • Claubert Wagner Guimarães DM, Geraldo Andrade C, Dejane Santos A, et al. Biocontrol potential of methyl chavicol for managing Spodoptera frugiperda (Lepidoptera: Noctuidae), an important corn pest. Environ Sci Pollut Res Int. 2020;27(5):5030–5041. doi: 10.1007/s11356-019-07079-6
  • Kamaraj C, Rajiv Gandhi P, Elango G, et al. Novel and environmental friendly approach; Impact of neem (Azadirachta indica) gum nano formulation (NGNF) on Helicoverpa armigera (Hub.) and Spodoptera litura (Fab.). Int J Biol Macromol. 2018;107:59–69. doi: 10.1016/j.ijbiomac.2017.08.145
  • Gahloth D, Shukla U, Birah A, et al. Bioinsecticidal activity of Murraya koenigii miraculin-like protein against Helicoverpa armigera and Spodoptera litura. Arch Insect Biochem Physiol. 2011;78(3):132–144. doi: 10.1002/arch.20448
  • Bhattacharyya A, Mazumdar S, Mazumdar Leighton S, et al. A Kunitz proteinase inhibitor from Archidendron ellipticum seeds: purification, characterization, and kinetic properties. Phytochem. 2006;67(3):232–241. doi: 10.1016/j.phytochem.2005.11.010
  • Bhattacharyya A, Mazumdar Leighton S, Babu CR. Bioinsecticidal activity of Archidendron ellipticum trypsin inhibitor on growth and serine digestive enzymes during larval development of Spodoptera litura. Comp Biochem Physiol C Toxicol Pharmacol. 2007;145(4):669–677. doi: 10.1016/j.cbpc.2007.03.003
  • Narayanan SS, Sengodan K, Sengottayan SN, et al. Eco-friendly biosynthesis of TiO2 nanoparticles using Desmostachya bipinnata extract: Larvicidal and pupicidal potential against Aedes aegypti and Spodoptera litura and acute toxicity in non-target organisms. Sci Total Environ. 2023;858:159512. doi: 10.1016/j.scitotenv.2022.159512