Publication Cover
Materials Technology
Advanced Performance Materials
Volume 39, 2024 - Issue 1
100
Views
0
CrossRef citations to date
0
Altmetric
Short Communication

Bird’s nest-like Nb2O5: preparation, characterization and multifunctional photocatalytic application

, , , &
Article: 2364552 | Received 07 Mar 2024, Accepted 01 Jun 2024, Published online: 14 Jun 2024

References

  • Wang S, Wang L, Huang W. Bismuth-based photocatalysts for solar energy conversion. J Mater Chem A. 2020;8(46):24307–10. doi: 10.1039/D0TA09729B
  • Huang N-Y, Zheng Y-T, Chen D, et al. Reticular framework materials for photocatalytic organic reactions. Chem Soc Rev. 2023;52(22):7949–8004. doi: 10.1039/D2CS00289B
  • Ravelli D, Dondi D, Fagnoni M, et al. Photocatalysis. A multi-faceted concept for green chemistry. Chem Soc Rev. 2009;38(7):1999–2011. doi: 10.1039/b714786b
  • Guo Q, Zhou C, Ma Z, et al. Elementary photocatalytic chemistry on TiO2 surfaces. Chem Soc Rev. 2016;45(13):3701–3730. doi: 10.1039/C5CS00448A
  • Mai H, Chen D, Tachibana Y, et al. Developing sustainable, high-performance perovskites in photocatalysis: design strategies and applications. Chem Soc Rev. 2021;50(24):13692–13729. doi: 10.1039/D1CS00684C
  • Liu C, Liu H, Yu JC, et al. Strategies to engineer metal-organic frameworks for efficient photocatalysis. Chin J Catalysis. 2023;55:1–19. doi: 10.1016/S1872-2067(23)64556-5
  • Zhou L, Li B, Li J, et al. Simultaneous triple-effect on inhibiting the photogenerated carriers recombination of g-C3N4 for boosting solar H2 production at atmospheric pressure. J Environ Chem Eng. 2023;11(3):109975. doi: 10.1016/j.jece.2023.109975
  • Wei Z, Liu J, Shangguan W. A review on photocatalysis in antibiotic wastewater: pollutant degradation and hydrogen production. Chin J Catalysis. 2020;41(10):1440–1450. doi: 10.1016/S1872-2067(19)63448-0
  • Zheng Y, Pan Z, Wang X. Advances in photocatalysis in China. Chin J Catalysis. 2013;34(3):524–535. doi: 10.1016/S1872-2067(12)60548-8
  • Devi LG, Kavitha R. A review on non metal ion doped titania for the photocatalytic degradation of organic pollutants under UV/solar light: role of photogenerated charge carrier dynamics in enhancing the activity. Appl Catal B Environ. 2013;140-141:559–587. doi: 10.1016/j.apcatb.2013.04.035
  • Chen P, Zhou M, Liu Y, et al. Carbon nitride in peroxide-coupled photocatalysis for aqueous organic pollutants destruction: engineered active sites and electron transfer regimes. Appl Catal B: Environ Eng. 2024;346:123767. doi: 10.1016/j.apcatb.2024.123767
  • Wang H, Li X, Zhao X, et al. A review on heterogeneous photocatalysis for environmental remediation: from semiconductors to modification strategies. Chin J Catalysis. 2022;43(2):178–214. doi: 10.1016/S1872-2067(21)63910-4
  • Likodimos V. Photonic crystal-assisted visible light activated TiO2 photocatalysis. Appl Catal B Environ. 2018;230:269–303. doi: 10.1016/j.apcatb.2018.02.039
  • Su H, Yin H, Wang R, et al. Atomic-level coordination structures meet graphitic carbon nitride (g-C3N4) for photocatalysis: energy conversion and environmental remediation. Appl Catal B Environ. 2024:123683. doi: 10.1016/j.apcatb.2023.123683
  • Liao W, Yang Z, Wang Y, et al. Novel Z-scheme Nb2O5/C3N5 photocatalyst for boosted degradation of tetracycline antibiotics by visible light-assisted activation of persulfate system. Chem Eng J. 2023;478:147346. doi: 10.1016/j.cej.2023.147346
  • Zhang P, Peng C, Li H, et al. Wavelength-dependent generation of reactive species in the photodegradation process over pure and C-doped Nb2O5. Sep Purif Technol. 2022;286:120406. doi: 10.1016/j.seppur.2021.120406
  • Wu T, Ma B, Bai H, et al. Ligand-induced reaction mechanism regulation on Sr/Nb2O5 for high-efficiency selective photocatalytic NO oxidation. Appl Catal B: Environ Eng. 2024;345:123688. doi: 10.1016/j.apcatb.2023.123688
  • Su K, Wang Y, Zhang C, et al. Tuning the Pt species on Nb2O5 by support-induced modification in the photocatalytic transfer hydrogenation of phenylacetylene. Appl Catal B Environ. 2021;298:120554. doi: 10.1016/j.apcatb.2021.120554
  • Peng C, Xie X, Xu W, et al. Engineering highly active Ag/Nb2O5@Nb2CTx (MXene) photocatalysts via steering charge kinetics strategy. Chem Eng J. 2021;421:128766. doi: 10.1016/j.cej.2021.128766
  • Abdellatif HRS, Zhang G, Tang Y, et al. A highly efficient dual-phase GaN(O)/Nb2O5(N) photocatalyst prepared through nitridation and reoxidation process for NO removal. Chem Eng J. 2020;402:126199. doi: 10.1016/j.cej.2020.126199
  • Zhang L, Yang J, Xie T, et al. Boosting visible-light-driven photocatalytic activity of BiPO4 via constructing Schottky junction with Ti3C2 MXene. Mater Design. 2020;192:108772. doi: 10.1016/j.matdes.2020.108772
  • Yang J, Xie T, Zhu Q, et al. Boosting the photocatalytic activity of BiOX under solar light via selective crystal facet growth. J Mater Chem C. 2020;8(7):2579–2588. doi: 10.1039/C9TC05752H
  • Yang J, Zhu Q, Xie Z, et al. Enhancement mechanism of photocatalytic activity for MoS2/Ti3C2 Schottky junction: experiment and DFT calculation. J Alloys Compd. 2021;887:161411. doi: 10.1016/j.jallcom.2021.161411
  • Song T, Wang C, Zhang Y, et al. Visible-light-induced oxidative alkene difunctionalization to access α-sulfonyloxy ketones catalyzed by oxygen-vacancy-rich Nb2O5. Appl Catal B Environ. 2022;304:120964. doi: 10.1016/j.apcatb.2021.120964
  • Yu D, He J, Xie T, et al. Boosting catalytic activity of SrCoO2.52 perovskite by Mn atom implantation for advanced peroxymonosulfate activation. J Hazard Mater. 2023;442:130085. doi: 10.1016/j.jhazmat.2022.130085
  • Feng S, Yu M, Xie T, et al. MoS2/CoFe2O4 heterojunction for boosting photogenerated carrier separation and the dominant role in enhancing peroxymonosulfate activation. Chem Eng J. 2022;433:134467. doi: 10.1016/j.cej.2021.134467
  • Xie T, Chen B, Mei Y, et al. Ultrafast degradation of tetracycline by PMS activation over perfect cubic configuration MnCo2O4.5: new insights into the role of metal-oxygen bonds in PMS activation. Sep Purif Technol. 2023;315:123694. doi: 10.1016/j.seppur.2023.123694
  • Xie T, Xu L, Liu C, et al. Synthesis and adsorption properties of high specific surface area strontium ferrite from industrial strontium residue. Vacuum. 2013;93:71–78. doi: 10.1016/j.vacuum.2013.01.005
  • Xie T, Xu L, Liu C, et al. Magnetic composite ZnFe2O4/SrFe12O19: preparation, characterization, and photocatalytic activity under visible light. Appl Surface Sci. 2013;273:684–691. doi: 10.1016/j.apsusc.2013.02.113
  • Hu X, Lu P, Fu M, et al. Activating the photocatalytic activity of insulator barium silicate: a liquid-phase alkalized tetracycline photosensitizer and its self-destruction. Chem Eng J. 2023;454:140281. doi: 10.1016/j.cej.2022.140281
  • Hosseini O, Zare-Shahabadi V, Ghaedi M, et al. Experimental design, RSM and ANN modeling of tetracycline photocatalytic degradation using LDH@CN. J Environ Chem Eng. 2022;10(5):108345. doi: 10.1016/j.jece.2022.108345
  • Zhang Y, Zhang Q, Xing K, et al. Construction of Z-scheme heterojunction LaCoO3 modified ZnO for photocatalytic degradation of tetracycline under visible light irradiation. Catal Commun. 2024;186:106815. doi: 10.1016/j.catcom.2023.106815
  • Shashikant, Dutta RK. A mechanistic study on enhanced solar photocatalytic activity of SnWO4/BiMoO6 nanocomposites for degradation of tetracycline. Inorg Chem Commun. 2023;158:111576. doi: 10.1016/j.inoche.2023.111576
  • Fan J, Bai M, Zhang H, et al. Synthesis and immobilization of HC/BiVO4 catalyst particles with PTFE for photocatalytic tetracycline degradation: preparation, performance and mechanism. J Water Process Eng. 2023;56:104474. doi: 10.1016/j.jwpe.2023.104474
  • Hou S, Gao Y, Song P, et al. Synthesis of Pd-modified Fe3O4 loaded on montmorillonite catalyst for photocatalytic degradation of tetracycline. Inorg Chem Commun. 2024;159:111745. doi: 10.1016/j.inoche.2023.111745
  • He Y, Xia J, Ye J, et al. Design of Co-doped carbon nitride based on melem supramolecular assembly with enhanced photocatalytic activity toward tetracycline hydrochloride degradation. Mater Sci Semicond Process. 2024;171:107999. doi: 10.1016/j.mssp.2023.107999
  • Dharman RK, Oh TH. Fabrication of g-C3N4@N-doped Bi2MoO6 heterostructure for enhanced visible-light-driven photocatalytic degradation of tetracycline pollutant. Chemosphere. 2023;338:139513. doi: 10.1016/j.chemosphere.2023.139513
  • Jiang R, Lu G, Zhang L, et al. Insight into the effect of microplastics on photocatalytic degradation tetracycline by a dissolvable semiconductor-organic framework. J Hazard Mater. 2024;463:132887. doi: 10.1016/j.jhazmat.2023.132887
  • Ni Q, Ke X, Qian W, et al. Insight into tetracycline photocatalytic degradation mechanism in a wide pH range on BiOI/BiOBr: coupling DFT/QSAR simulations with experiments. Appl Catal B Environ. 2024;340:123226. doi: 10.1016/j.apcatb.2023.123226
  • Mondal S, Dilly Rajan K, Rathinam M, et al. Enhanced photocatalytic degradation of tetracycline using NiCo–BiVO4 nanocomposite under visible light irradiation: A noble-metal-free approach for water remediation. Chemosphere. 2024;350:141012. doi: 10.1016/j.chemosphere.2023.141012
  • Wang J, Ye N, Yan X, et al. Sb2WO6 nanoparticles coated TiO2 nanobelts exhibiting remarkable photo-catalyst response. Mater Technol. 2018;33(7):479–487. doi: 10.1080/10667857.2018.1463686
  • He Y, He Q, Liu Z, et al. Controllable preparation and improved performance of TiO2 photocatalysts with various structures. Mater Technol. 2020;35(1):1–10. doi: 10.1080/10667857.2019.1644038
  • Shi Y, Li J, Yu Z, et al. Investigation of enhanced photocatalytic performance of europium doped TiO2 film. Mater Technol. 2021;36(9):552–563. doi: 10.1080/10667857.2020.1777796
  • Feng S, Xie T, Wang J, et al. Photocatalytic activation of PMS over magnetic heterojunction photocatalyst SrTiO3/BaFe12O19 for tetracycline ultrafast degradation. Chem Eng J. 2023;470:143900. doi: 10.1016/j.cej.2023.143900
  • He Y, Qian J, Wang P, et al. Synergized selenium-vacancy heterogeneous interface and carbon nanotubes for insight into efficient oxidation of pollutants via photocatalytic peroxymonosulfate activation. Appl Catal B Environ. 2023;330:122620. doi: 10.1016/j.apcatb.2023.122620
  • Yang J, Xie T, Mei Y, et al. High-efficiency V-Mediated Bi2MoO6 photocatalyst for PMS activation: modulation of energy band structure and enhancement of surface reaction. Appl Catal B Environ. 2023;339:123149. doi: 10.1016/j.apcatb.2023.123149
  • Xiao Y, He J, An J, et al. Highly efficient activation of peroxymonosulfate by ZIF-67 anchored cotton derived for ciprofloxacin degradation. Environ Res. 2024;244:117863. doi: 10.1016/j.envres.2023.117863
  • Yang J, Zhu Q, Xie T, et al. Insights into interface charge extraction in a noble-metal-free doped Z-scheme NiO@BiOCl heterojunction. Catalysts. 2020;10(9):958. doi: 10.3390/catal10090958