304
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Autonomic nervous system and endocrine system response to upper or lower cervical spine mobilization in males with persistent post-concussion symptoms: a proof-of-concept trial

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Received 16 Apr 2024, Accepted 29 May 2024, Published online: 21 Jun 2024

References

  • Farrell G, Wang S, Chapple C, et al. Dysfunction of the stress response in individuals with persistent post-concussion symptoms: a scoping review. Phys Ther Rev. 2022;27(5):1–22. doi: 10.1080/10833196.2022.2096195
  • Weil ZM, White B, Whitehead B, et al. The role of the stress system in recovery after traumatic brain injury: a tribute to Bruce S. McEwen Neurobiol Stress. 2022;19:100467. doi: 10.1016/j.ynstr.2022.100467
  • Chrousos GP. Stress and disorders of the stress system. Nat Rev Endocrinol. 2009;5(7):374–381. doi: 10.1038/nrendo.2009.106
  • Agorastos A, Heinig A, Stiedl O, et al. Vagal effects of endocrine HPA axis challenges on resting autonomic activity assessed by heart rate variability measures in healthy humans. Psychoneuroendocrinology. 2019;102:196–203. doi: 10.1016/j.psyneuen.2018.12.017
  • Nicolaides NC, Kyratzi E, Lamprokostopoulou A, et al. Stress, the stress system and the role of glucocorticoids. Neuroimmunomodulation. 2015;22(1–2):6–19. doi: 10.1159/000362736
  • Sawicki CM, Humeidan ML, Sheridan JF. Neuroimmune interactions in pain and stress: an interdisciplinary approach. Neuroscientist. 2020;27(2):113–128. doi: 10.1177/1073858420914747
  • Tsigos C, Chrousos GP. Hypothalamic–pituitary–adrenal axis, neuroendocrine factors and stress. J Psychosom Res. 2002;53(4):865–871. doi: 10.1016/S0022-3999(02)00429-4
  • Herman JP. Regulation of hypothalamo-pituitary-adrenocortical responses to stressors by the nucleus of the solitary tract/dorsal vagal complex. Cell Mol Neurobiol. 2018;38(1):25–35. doi: 10.1007/s10571-017-0543-8
  • Godoy LD, Rossignoli MT, Delfino-Pereira P, et al. A comprehensive overview on stress neurobiology: basic concepts and clinical implications. Front Behav Neurosci. 2018;12:1–23. doi: 10.3389/fnbeh.2018.00127
  • Schuurmans AAT, Nijhof KS, Cima M, et al. Alterations of autonomic nervous system and HPA axis basal activity and reactivity to acute stress: a comparison of traumatized adolescents and healthy controls. Stress. 2021;24(6):876–887. doi: 10.1080/10253890.2021.1900108
  • Dwyer B, Katz DI. Postconcussion syndrome. Handb Clin Neurol. 2018;158:163–178.
  • Coffman CA, Kay JJM, Saba KM, et al. Predictive value of subacute heart rate variability for determining outcome following adolescent concussion. J Clin Med. 2021;10(1):1–17. doi: 10.3390/jcm10010161
  • Anderson FL, Hellwinkel JE, Montjoy M, et al. Change in heart rate variability after concussion in a collegiate soccer player. Neurotrauma Rep. 2020;1(1):88–92. doi: 10.1089/neur.2020.0003
  • Lagos L, Thompson J, Vaschillo E. A preliminary study: heart rate variability biofeedback for treatment of postconcussion syndrome. Biofeedback. 2013;41(3):136–143. doi: 10.5298/1081-5937-41.3.02
  • Ritchie EV, Emery C, Debert CT. Analysis of serum cortisol to predict recovery in paediatric sport-related concussion. Brain Inj. 2018;32(4):523–528. doi: 10.1080/02699052.2018.1429662
  • Di Battista AP, Rhind SG, Churchill N, et al. Peripheral blood neuroendocrine hormones are associated with clinical indices of sport-related concussion. Sci Rep. 2019;9(1):1–10. doi: 10.1038/s41598-019-54923-3
  • Villegas E, Hartsock MJ, Aben B, et al. Association between altered cortisol profiles and neurobehavioral impairment after mild traumatic brain injury in college students. J Neurotrauma. 2022;39(11–12):809–820. doi: 10.1089/neu.2021.0495
  • Tabor J, La P, Kline G, et al. Saliva cortisol as a biomarker of injury in youth sport-related concussion. J Neurotrauma. 2022;39:1–13.
  • Ellis MJ, McDonald PJ, Olson A, et al. Cervical spine dysfunction following pediatric sports-related head trauma. J Head Trauma Rehabil. 2019;34(2):103–110. doi: 10.1097/HTR.0000000000000411
  • Marshall CM, Vernon H, Leddy JJ, et al. The role of the cervical spine in post-concussion syndrome. Phys Sportsmed. 2015;43(3):274–284. doi: 10.1080/00913847.2015.1064301
  • Schneider KJ. Concussion part II: rehabilitation - the need for a multifaceted approach. Musculoskeletal Sci Pract. 2019;42:151–161. doi: 10.1016/j.msksp.2019.01.006
  • Gross A, Miller J, D’Sylva J, et al. Manipulation or mobilisation for neck pain: a Cochrane review. Man Ther. 2010;15(4):315–333. doi: 10.1016/j.math.2010.04.002
  • Gross A, Langevin P, Burnie SJ, et al. Manipulation and mobilisation for neck pain contrasted against an inactive control or another active treatment. Cochrane Database Syst Rev. 2015;2015(9):CD004249. doi: 10.1002/14651858.CD004249.pub4
  • Dunning JR, Cleland JA, Waldrop MA, et al. Upper cervical and upper thoracic thrust manipulation versus nonthrust mobilization in patients with mechanical neck pain: a multicenter randomized clinical trial. J Orthop Sports Phys Ther. 2012;42(1):5–18. doi: 10.2519/jospt.2012.3894
  • Reid SA, Rivett DA. Manual therapy treatment of cervicogenic dizziness: a systematic review. Man Ther. 2005;10(1):4–13. doi: 10.1016/j.math.2004.03.006
  • Reid SA, Callister R, Snodgrass SJ, et al. Manual therapy for cervicogenic dizziness: long-term outcomes of a randomised trial. Man Ther. 2015;20(1):148–156. doi: 10.1016/j.math.2014.08.003
  • Reid SA, Callister R, Katekar MG, et al. Effects of cervical spine manual therapy on range of motion, head repositioning, and balance in participants with cervicogenic dizziness: a randomized controlled trial. Arch Phys Med Rehabil. 2014;95(9):1603–1612. doi: 10.1016/j.apmr.2014.04.009
  • Reid SA, Rivett DA, Katekar MG, et al. Sustained natural apophyseal glides (SNAGs) are an effective treatment for cervicogenic dizziness. Man Ther. 2008;13(4):357–366. doi: 10.1016/j.math.2007.03.006
  • Dunning JR, Butts R, Mourad F, et al. Upper cervical and upper thoracic manipulation versus mobilization and exercise in patients with cervicogenic headache: a multi-center randomized clinical trial. BMC Musculoskelet Disord. 2016;17(1):64. doi: 10.1186/s12891-016-0912-3
  • Kennedy E, Chapple C, Quinn D, et al. Can the neck contribute to persistent symptoms post concussion? long-term follow up from a prospective descriptive case series. J Man Manip Ther. 2021;29(5):1–13. doi: 10.1080/10669817.2021.1920276
  • Ellis MJ, Leddy JJ, Willer B. Physiological, vestibulo-ocular and cervicogenic post-concussion disorders: an evidence-based classification system with directions for treatment. Brain Inj. 2015;29(2):238–248. doi: 10.3109/02699052.2014.965207
  • Farrell G, Bell M, Chapple C, et al. Autonomic nervous system and endocrine system response to upper and lower cervical spine mobilization in healthy male adults: a randomized crossover trial. J Man Manip Ther. 2023;31(6):1–14. doi: 10.1080/10669817.2023.2177071
  • Groschl M. Current status of salivary hormone analysis. Clin Chem. 2008;54(11):1759–1769. doi: 10.1373/clinchem.2008.108910
  • Shaffer F, McCraty R, Zerr CL. A healthy heart is not a metronome: an integrative review of the heart’s anatomy and heart rate variability. Front psychol. 2014;5:1–19. doi: 10.3389/fpsyg.2014.01040
  • Schneider KJ, Meeuwisse WH, Nettel-Aguirre A, et al. Cervicovestibular rehabilitation in sport-related concussion: a randomised controlled trial. Br J Sports Med. 2014;48(17):1294–1298. doi: 10.1136/bjsports-2013-093267
  • Moher D, Hopewell S, Schulz KF, et al. CONSORT 2010 explanation and elaboration: updated guidelines for reporting parallel group randomised trials. Br Med J. 2010;340(mar23 1):c869. doi: 10.1136/bmj.c869
  • Silvetti MS, Drago F, Ragonese P. Heart rate variability in healthy children and adolescents is partially related to age and gender. Int J Cardiol. 2001;81(2):169–174. doi: 10.1016/S0167-5273(01)00537-X
  • Feldman HA, Longcope C, Derby CA, et al. Age trends in the level of serum testosterone and other hormones in middle-aged men: longitudinal results from the Massachusetts male aging study. J Clin Endocrinol Metab. 2002;87(2):589–598. doi: 10.1210/jcem.87.2.8201
  • McCrory P, Meeuwisse W, Dvorak J, et al. Consensus statement on concussion in sport-the 5th international conference on concussion in sport held in berlin, October 2016. Br J Sports Med. 2017;51(11):838–847. doi: 10.1136/bjsports-2017-097699
  • Agorastos A, Kellner M, Stiedl O, et al. Blunted autonomic reactivity to pharmacological panic challenge under long-term escitalopram treatment in healthy men. Int J Neuropsychopharmacol. 2014;18(5):1–11. doi: 10.1093/ijnp/pyu053
  • Hutting N, Kerry R, Coppieters MW, et al. Considerations to improve the safety of cervical spine manual therapy. Musculoskeletal Sci Pract. 2018;33:41–45. doi: 10.1016/j.msksp.2017.11.003
  • Koenig J, Thayer JF. Sex differences in healthy human heart rate variability: a meta-analysis. Neurosci Biobehav Rev. 2016;64:288–310. doi: 10.1016/j.neubiorev.2016.03.007
  • Van Cauter E, Leproult R, Kupfer DJ. Effects of gender and age on the levels and circadian rhythmicity of plasma cortisol. J Clin Endocrinol Metab. 1996;81(7):2468–2473. doi: 10.1210/jcem.81.7.8675562
  • Saeki Y, Atogami F, Takahashi K, et al. Reflex control of autonomic function induced by posture change during the menstrual cycle. J Auton Nerv Syst. 1997;66(1–2):69–74. doi: 10.1016/S0165-1838(97)00067-2
  • Sato N, Miyake S, Ji A, et al. Power spectral analysis of heart rate variability in healthy young women during the normal menstrual cycle. Psychosom Med. 1995;57(4):331–335. doi: 10.1097/00006842-199507000-00004
  • Schmalenberger KM, Eisenlohr-Moul TA, Jarczok MN, et al. Menstrual cycle changes in vagally-mediated heart rate variability are associated with progesterone: evidence from two within-person studies. J Clin Med. 2020;9(3):1–20. doi: 10.3390/jcm9030617
  • Piekarz V, Perry J. An investigation into the effects of applying a lumbar Maitland mobilisation at different frequencies on sympathetic nervous system activity levels in the lower limb. Man Ther. 2016;23:83–89. doi: 10.1016/j.math.2016.01.001
  • Karim N, Hasan J, Ali S. Heart rate variability - a review. J Basic Appl Scis. 2011;7:71–77.
  • Strahler J, Skoluda N, Kappert MB, et al. Simultaneous measurement of salivary cortisol and alpha-amylase: application and recommendations. Neurosci Biobehav Rev. 2017;83:657–677. doi: 10.1016/j.neubiorev.2017.08.015
  • Sladek CD, Michelini LC, Stachenfeld NS, et al. Endocrine-autonomic linkages. Compr Physiol. 2015;5:1281–1323.
  • Bozovic D, Racic M, Ivkovic N. Salivary cortisol levels as a biological marker of stress reaction. Med Archives. 2013;67(5):374–377. doi: 10.5455/medarh.2013.67.374-377
  • Colombi T. The effects induced by spinal manipulative therapy on the immune and endocrine systems. Medicina (B Aires). 2019;55(8):1–12. doi: 10.3390/medicina55080448
  • Adam EK, Kumari M. Assessing salivary cortisol in large-scale, epidemiological research. Psychoneuroendocrinology. 2009;34(10):1423–1436. doi: 10.1016/j.psyneuen.2009.06.011
  • Nater UM, Rohleder N, Schlotz W, et al. Determinants of the diurnal course of salivary alpha-amylase. Psychoneuroendocrinology. 2007;32(4):392–401. doi: 10.1016/j.psyneuen.2007.02.007
  • Touitou Y, Haus E. Alterations with aging of the endocrine and neuroendocrine circadian system in humans. Chronobiol Int. 2000;17(3):369–390. doi: 10.1081/CBI-100101052
  • Golden SH, Wand GS, Malhotra S, et al. Reliability of hypothalamic–pituitary–adrenal axis assessment methods for use in population-based studies. Eur J Epidemiol. 2011;26(7):511–525. doi: 10.1007/s10654-011-9585-2
  • Electrophysiology TFOTESOCTNA. Heart rate variability: standards of measurement, physiological interpretation and clinical use. task force of the European society of cardiology and the north American society of pacing and electrophysiology. Circulation. 1996;93(5):1043–1065. doi: 10.1161/01.CIR.93.5.1043
  • Del Paso Ga R, Langewitz W, Mulder LJM, et al. The utility of low frequency heart rate variability as an index of sympathetic cardiac tone: a review with emphasis on a reanalysis of previous studies. Psychophysiology. 2013;50(5):477–487. doi: 10.1111/psyp.12027
  • Allen J. Photoplethysmography and its application in clinical physiological measurement. Physiol Meas. 2007;28(3):R1–R39. doi: 10.1088/0967-3334/28/3/R01
  • Plews DJ, Scott B, Altini M, et al. Comparison of heart-rate-variability recording with smartphone photoplethysmography, polar H7 chest strap, and electrocardiography. Int J Sports Physiol Perform. 2017;12(10):1324–1328. doi: 10.1123/ijspp.2016-0668
  • Pernice R, Javorka M, Krohova J, et al. Reliability of short-term heart rate variability indexes assessed through photoplethysmography. In: Annual International Conference IEEE England Medical Biological Society; Honolulu, Hawaii, USA; 2018. p. 5610–513.
  • Heathers JA. Smartphone-enabled pulse rate variability: an alternative methodology for the collection of heart rate variability in psychophysiological research. Int J Psychophysiol. 2013;89(3):297–304. doi: 10.1016/j.ijpsycho.2013.05.017
  • Laborde S, Mosley E, Thayer JF. Heart rate variability and cardiac vagal tone in psychophysiological research – recommendations for experiment planning, data analysis, and data reporting. Frontiers In Psychology. 2017;8:1–18. doi: 10.3389/fpsyg.2017.00213
  • Moya-Ramon M, Mateo-March M, Pena-Gonzalez I, et al. Validity and reliability of different smartphones applications to measure HRV during short and ultra-short measurements in elite athletes. Comput Methods Programs Biomed. 2022;217:106696. doi: 10.1016/j.cmpb.2022.106696
  • Al Haddad H, Laursen P, Chollet D, et al. Reliability of resting and postexercise heart rate measures. Int J Sports Med. 2011;32(8):598–605. doi: 10.1055/s-0031-1275356
  • Plews DJ, Laursen PB, Kilding AE, et al. Heart rate variability in elite triathletes, is variation in variability the key to effective training? a case comparison. Eur J Appl Physiol. 2012;112(11):3729–3741. doi: 10.1007/s00421-012-2354-4
  • Plews DJ, Laursen PB, Kilding AE, et al. Evaluating training adaptation with heart-rate measures: a methodological comparison. Int J Sports Physiol Perform. 2013;8(6):688–691. doi: 10.1123/ijspp.8.6.688
  • Kim H-S, Yoon K-H, Cho J-H. Diurnal heart rate variability fluctuations in normal volunteers. J Diabetes Sci Technol. 2014;8(2):431–433. doi: 10.1177/1932296813519013
  • Van Eekelen APJ, Houtveen JH, Kerkhof GA. Circadian variation in cardiac autonomic activity: reactivity measurements to different types of stressors. Chronobiol Int. 2004;21(1):107–129. doi: 10.1081/CBI-120027983
  • Massin MM. Circadian rhythm of heart rate and heart rate variability. Arch Dis Child. 2000;83(2):179–182. doi: 10.1136/adc.83.2.179
  • Esco MR, Flatt AA. Ultra-short-term heart rate variability indexes at rest and post-exercise in athletes: evaluating the agreement with accepted recommendations. J Sports Sci Med. 2014;13(3):535–541.
  • Young FLS, Leicht AS. Short-term stability of resting heart rate variability: influence of position and gender. Appl Physiol Nutr Metab. 2011;36(2):210–218. doi: 10.1139/h10-103
  • King NS. Emotional, neuropsychological, and organic factors: their use in the prediction of persisting postconcussion symptoms after moderate and mild head injuries. J Neurol Neurosurg Psychiatry. 1996;61(1):75–81. doi: 10.1136/jnnp.61.1.75
  • Ingebrigtsen T, Waterloo K, Marup-Jensen S, et al. Quantification of post-concussion symptoms 3 months after minor head injury in 100 consecutive patients. J Neurol. 1998;245(9):609–612. doi: 10.1007/s004150050254
  • King NS, Crawford S, Wenden FJ, et al. The rivermead post concussion symptoms questionnaire: a measure of symptoms commonly experienced after head injury and its reliability. J Neurol. 1995;242(9):587–592. doi: 10.1007/BF00868811
  • Mercier LJ, Fung TS, Harris AD, et al. Improving symptom burden in adults with persistent post-concussive symptoms: a randomized aerobic exercise trial protocol. BMC Neurol. 2020;20(1):1–9. doi: 10.1186/s12883-020-1622-x
  • Cook C, Sheets C. Clinical equipoise and personal equipoise: two necessary ingredients for reducing bias in manual therapy trials. J Man Manip Ther. 2011;19(1):55–57. doi: 10.1179/106698111X12899036752014
  • Verhagen A, L-M Y. Editorial: what about sample size? Musculoskeletal Sci Pract. 2021;54:102405. doi: 10.1016/j.msksp.2021.102405
  • Ting N, Chen D-G, Ho S, et al. Design a proof of concept trial. Singapore: Springer Singapore; 2017. p. 75–92.
  • Mohd Razali N, Yap B. Power comparisons of Shapiro-wilk, kolmogorov-Smirnov, lilliefors and Anderson-darling tests. J Stat Model Anal. 2011;2:21–33.
  • Lo S, Andrews S. To transform or not to transform: using generalized linear mixed models to analyse reaction time data. Front psychol. 2015;6:1171. doi: 10.3389/fpsyg.2015.01171
  • Lien D, Balakrishnan N. On regression analysis with data cleaning via trimming, winsorization, and dichotomization. Commun Stat-Simul C. 2005;34(4):839–849. doi: 10.1080/03610910500307695
  • Putt ME, Chinchilli VM. Nonparametric approaches to the analysis of crossover studies. Stat Sci. 2004;19(4):712–719. doi: 10.1214/088342304000000611
  • Koch GG. The use of non-parametric methods in the statistical analysis of the two-period change-over design. Biometrics. 1972;28(2):577–584. doi: 10.2307/2556170
  • Pereira DG, Afonso A, Medeiros FM. Overview of friedman’s test and post-hoc analysis. Commun Stat-Simul. 2014;44(10):2636–2653. doi: 10.1080/03610918.2014.931971
  • Pallant J. SPSS Survival Manual. London: Routledge; 2020.
  • Woolson RF. Wilcoxon Signed-Rank Test. In: Armitage P, Colton T, editors. Encyclopedia of Biostatistics. 2005. doi: 10.1002/0470011815.b2a15177
  • Burke S. Missing values, outliers, robust statistics & non-parametric methods. Stat Data Anal. 2001;2:19.
  • Sullivan GM, Feinn R. Using effect size—or why the p value is not enough. J Grad Med Educ. 2012;4(3):279–282. doi: 10.4300/JGME-D-12-00156.1
  • Altman DG, Gore SM, Gardner MJ, et al. Statistical guidelines for contributors to medical journals. Br Med J. 1983;286(6376):1489–1493. doi: 10.1136/bmj.286.6376.1489
  • Sterne JAC. Sifting the evidence-what’s wrong with significance tests? Another comment on the role of statistical methods. Br Med J. 2001;322(7280):226–231. doi: 10.1136/bmj.322.7280.226
  • Dwan K, Li T, Altman DG, et al. CONSORT 2010 statement: extension to randomised crossover trials. Br Med J. 2019;l4378. doi: 10.1136/bmj.l4378
  • Damodaran O, Rizk E, Rodriguez J, et al. Cranial nerve assessment: a concise guide to clinical examination. Clin Anat. 2014;27(1):25–30. doi: 10.1002/ca.22336
  • Bland JH, Boushey DR. Anatomy and physiology of the cervical spine. Semin Arthritis Rheum. 1990;20(1):1–20. doi: 10.1016/0049-0172(90)90090-3
  • Elias M. Cervical sympathetic and stellate ganglion blocks. Pain Physician. 2000;3(3):294–304. doi: 10.36076/ppj.2000/3/294
  • Cohen J. Statistical power analysis for the behavioral sciences. 2nd ed. Hillside (NJ): Lawrence Erlbaum Associates; 1988.
  • Cunniffe B, Hore AJ, Whitcombe DM, et al. Time course of changes in immuneoendocrine markers following an international rugby game. Eur J Appl Physiol. 2010;108(1):113–122. doi: 10.1007/s00421-009-1200-9
  • Kovanur Sampath K, Mani R, Katare R, et al. Thoracic spinal manipulation effect on neuroendocrine response in people with achilles tendinopathy: a randomized crossover trial. J Manipulative Physiol Ther. 2021;44(5):420–431. doi: 10.1016/j.jmpt.2021.06.001
  • Patel TR. Chapter 36 - anatomy of the sympathetic nervous system. In: Tubbs R, Rizk E, Shoja M, Loukas M, Barbaro N Spinner R, editors. Nerves and Nerve Injuries. San Diego: Academic Press; 2015. p. 495–506.
  • Thayer JF, Åhs F, Fredrikson M, et al. A meta-analysis of heart rate variability and neuroimaging studies: implications for heart rate variability as a marker of stress and health. Neurosci Biobehav Rev. 2012;36(2):747–756. doi: 10.1016/j.neubiorev.2011.11.009
  • Thayer JF, Sternberg E. Beyond heart rate variability: vagal regulation of allostatic systems. Ann N Y Acad Sci. 2006;1088(1):361–372. doi: 10.1196/annals.1366.014
  • Win NN, Jorgensen AM, Chen YS, et al. Effects of upper and lower cervical spinal manipulative therapy on blood pressure and heart rate variability in volunteers and patients with neck pain: a randomized controlled, cross-over, preliminary study. J Chiropr Med. 2015;14(1):1–9. doi: 10.1016/j.jcm.2014.12.005
  • Altman DG. Practical statistics for medical research. New York: Chapman and Hall/CRC; 1990.
  • Burke JF, Sussman JB, Kent DM, et al. Three simple rules to ensure reasonably credible subgroup analyses. Br Med J. 2015;h5651. doi: 10.1136/bmj.h5651
  • Abaji JP, Curnier D, Moore RD, et al. Persisting effects of concussion on heart rate variability during physical exertion. J Neurotrauma. 2016;33(9):811–817. doi: 10.1089/neu.2015.3989
  • Pertab JL, Merkley TL, Cramond AJ, et al. Concussion and the autonomic nervous system: an introduction to the field and the results of a systematic review. NeuroRehabilitation. 2018;42(4):397–427. doi: 10.3233/NRE-172298
  • Carlesso LC, Sturgeon JA, Zautra AJ. Exploring the relationship between disease-related pain and cortisol levels in women with osteoarthritis. Osteoarthritis Cartilage. 2016;24(12):2048–2054. doi: 10.1016/j.joca.2016.06.018
  • Evers AW, Verhoeven EW, van Middendorp H, et al. Does stress affect the joints? Daily stressors, stress vulnerability, immune and HPA axis activity, and short-term disease and symptom fluctuations in rheumatoid arthritis. Ann Rheum Dis. 2014;73(9):1683–1688. doi: 10.1136/annrheumdis-2012-203143
  • Hashim M, Athar S, Gaba WH. New onset adrenal insufficiency in a patient with COVID-19. BMJ Case Rep. 2021;14(1):e237690. doi: 10.1136/bcr-2020-237690
  • Kanczkowski W, Evert K, Stadtmüller M, et al. COVID-19 targets human adrenal glands. Lancet Diabetes Endocrinol. 2022;10(1):13–16. doi: 10.1016/S2213-8587(21)00291-6
  • Kanczkowski W, Beuschlein F, Bornstein SR. Is there a role for the adrenal glands in long COVID? Nat Rev Endocrinol. 2022;18(8):451–452. doi: 10.1038/s41574-022-00700-8
  • Swai J, Hu Z, Zhao X, et al. Heart rate and heart rate variability comparison between postural orthostatic tachycardia syndrome versus healthy participants; a systematic review and meta-analysis. BMC Cardiovasc Disord. 2019;19(1):1–12. doi: 10.1186/s12872-019-01298-y
  • Martins DF, Viseux FJF, Salm DC, et al. The role of the vagus nerve in fibromyalgia syndrome. Neurosci Biobehav Rev. 2021;131:1136–1149. doi: 10.1016/j.neubiorev.2021.10.021
  • Covassin T, Moran RM, Elbin RJ. Sex differences in reported concussion injury rates and time loss from participation: an update of the national collegiate athletic association injury surveillance program from 2004-2005 through 2008-2009. J Athl Train. 2016;51(3):189–194. doi: 10.4085/1062-6050-51.3.05
  • Damian K, Chad C, Kenneth L, et al. Time to evolve: the applicability of pain phenotyping in manual therapy. J Man Manip Ther. 2022;30(2):61–67. doi: 10.1080/10669817.2022.2052560
  • Kudielka BM, Gierens A, Hellhammer DH, et al. Salivary cortisol in ambulatory assessment-some dos, some don’ts, and some open questions. Psychosom Med. 2012;74(4):418–431. doi: 10.1097/PSY.0b013e31825434c7
  • Chrousos GP, Gold PW. The concepts of stress and stress system disorders: overview of physical and behavioral homeostasis. J Am Med Assoc. 1992;267(9):1244–1252. doi: 10.1001/jama.1992.03480090092034
  • Maes M, Mommen K, Hendrickx D, et al. Components of biological variation, including seasonality, in blood concentrations of TSH, TT3, FT4, PRL, cortisol and testosterone in healthy volunteers. Clin Endocrinol (Oxf). 1997;46(5):587–598. doi: 10.1046/j.1365-2265.1997.1881002.x
  • Hellhammer DH, Wust S, Kudielka BM. Salivary cortisol as a biomarker in stress research. Psychoneuroendocrinology. 2009;34(2):163–171. doi: 10.1016/j.psyneuen.2008.10.026
  • Stalder T, Kirschbaum C, Kudielka BM, et al. Assessment of the cortisol awakening response: expert consensus guidelines. Psychoneuroendocrinology. 2016;63:414–432. doi: 10.1016/j.psyneuen.2015.10.010
  • Kudielka BM, Hellhammer DH, Wüst S. Why do we respond so differently? Reviewing determinants of human salivary cortisol responses to challenge. Psychoneuroendocrinology. 2009;34(1):2–18. doi: 10.1016/j.psyneuen.2008.10.004
  • Wolfram M, Bellingrath S, Kudielka BM. The cortisol awakening response (CAR) across the female menstrual cycle. Psychoneuroendocrinology. 2011;36(6):905–912. doi: 10.1016/j.psyneuen.2010.12.006
  • Hutchison MG, Mainwaring L, Senthinathan A, et al. Psychological and physiological markers of stress in concussed athletes across recovery milestones. J Head Trauma Rehabil. 2017;32(3):38–48. doi: 10.1097/HTR.0000000000000252
  • Hansen ÅM, Garde AH, Persson R. Sources of biological and methodological variation in salivary cortisol and their impact on measurement among healthy adults: a review. Scand J Clin Lab Invest. 2008;68(6):448–458. doi: 10.1080/00365510701819127
  • Malfliet A, Lluch Girbés E, Pecos‐Martin D, et al. The influence of treatment expectations on clinical outcomes and cortisol levels in patients with chronic neck pain: an experimental study. Pain Pract. 2019;19(4):370–381. doi: 10.1111/papr.12749
  • Stein PK, Pu Y. Heart rate variability, sleep and sleep disorders. Sleep Med Rev. 2012;16(1):47–66. doi: 10.1016/j.smrv.2011.02.005
  • Stanley J, Peake JM, Buchheit M. Cardiac parasympathetic reactivation following exercise: implications for training prescription. Sports Med. 2013;43(12):1259–1277. doi: 10.1007/s40279-013-0083-4
  • Lu C-L, Zou X, Orr WC, et al. Postprandial changes of sympathovagal balance measured by heart rate variability. Dig Dis Sci. 1999;44(4):857–861. doi: 10.1023/A:1026698800742
  • Zimmermann-Viehoff F, Thayer J, Koenig J, et al. Short-term effects of espresso coffee on heart rate variability and blood pressure in habitual and non-habitual coffee consumers – a randomized crossover study. Nutr Neurosci. 2016;19(4):169–175. doi: 10.1179/1476830515Y.0000000018
  • Inoue N, Kuroda K, Sugimoto A, et al. Autonomic nervous responses according to preference for the odor of jasmine tea. Biosci Biotechnol Biochem. 2003;67(6):1206–1214. doi: 10.1271/bbb.67.1206
  • Quintana DS, Guastella AJ, McGregor IS, et al. Moderate alcohol intake is related to increased heart rate variability in young adults: implications for health and well-being. Psychophysiology. 2013;50(12):1202–1208. doi: 10.1111/psyp.12134
  • Quintana DS, McGregor IS, Guastella AJ, et al. A meta-analysis on the impact of alcohol dependence on short-term resting-state heart rate variability: implications for cardiovascular risk. Alcohol Clin Exp Res. 2013;37:E23–E9. doi: 10.1111/j.1530-0277.2012.01913.x
  • Fagius J, Karhuvaara S. Sympathetic activity and blood pressure increases with bladder distension in humans. Hypertension. 1989;14(5):511–517. doi: 10.1161/01.HYP.14.5.511
  • Ben-Dror I, Weissman A, Leurer MK, et al. Alterations of heart rate variability in women with overactive bladder syndrome. Int Urogynecol J. 2012;23(8):1081–1086. doi: 10.1007/s00192-012-1738-7
  • Heathers JAJ. Everything hertz: methodological issues in short-term frequency-domain HRV. Front Physiol. 2014;5:1–15. doi: 10.3389/fphys.2014.00177
  • O’Brien IA, O’Hare P, Corrall RJ. Heart rate variability in healthy subjects: effect of age and the derivation of normal ranges for tests of autonomic function. Heart. 1986;55(4):348–354. doi: 10.1136/hrt.55.4.348
  • Gisselman AS, D’Amico M, Smoliga JM. Optimizing intersession reliability of heart rate variability—the effects of artifact correction and breathing type. J Strength Cond Res. 2020;34(11). doi: 10.1519/JSC.0000000000002258
  • Flatt AA, Esco MR. Heart rate variability stabilization in athletes: towards more convenient data acquisition. Clin Physiol Funct Imaging. 2016;36(5):331–336. doi: 10.1111/cpf.12233
  • Quintana DS, Alvares GA, Heathers JAJ. Guidelines for reporting articles on psychiatry and heart rate variability (GRAPH): recommendations to advance research communication. Transl Psychiatry. 2016;6(5):1–10. doi: 10.1038/tp.2016.73
  • Tarvainen MP, Niskanen J-P, Lipponen JA, et al. Kubios HRV – heart rate variability analysis software. Comput Methods Programs Biomed. 2014;113(1):210–220. doi: 10.1016/j.cmpb.2013.07.024
  • van Eck MM, Nicolson NA. Perceived stress and salivary cortisol in daily life. Ann Behav Med. 1994;16(3):221–227.
  • Smith KJ, Rosenberg DL, Timothy Haight G. An assessment of the psychometric properties of the perceived stress scale-10 (PSS10) with business and accounting students. Account Perspect. 2014;13(1):29–59. doi: 10.1111/1911-3838.12023