955
Views
8
CrossRef citations to date
0
Altmetric
Articles

Fitting Structural Equation Model Trees and Latent Growth Curve Mixture Models in Longitudinal Designs: The Influence of Model Misspecification

, &

References

  • Akaike, H. (1973, September). Information theory and an extension of the maximum likelihood principle. In Petrov, B. N. & Csáki, F., 2nd International Symposium on Information Theory (pp. 267–281) Tsahkadsor, Armenia, USSR, Budapest: Akadémiai Kiadó.
  • Asparouhov, T., & Muthén, B. (2015). Structural equation Models and mixture models with continuous nonnormal skewed distributions. Structural Equation Modeling, 23, 1–19.
  • Bauer, D. J., & Curran, P. J. (2003). Distributional assumptions of growth mixture models: Implications for overextraction of latent trajectory classes. Psychological Methods, 8, 338–363.
  • Bauer, D. J., & Curran, P. J. (2004). The integration of continuous and discrete latent variable models: Potential problems and promising opportunities. Psychological Methods, 9, 3–29.
  • Boker, S., Neale, M., Maes, H., Wilde, M., Spiegel, M., Brick, T. R., Fox, J. (2011). OpenMx: Multipurpose software for statistical modeling (Version R package version 1.0.4). Retrieved from http://openmx.psyc.virginia.edu.
  • Bollen, K. A., & Curran, P. J. (2006). Latent curve models: A structural equation approach. Hoboken, NJ: Wiley.
  • Brandmaier, A. M., Oertzen, T. v., McArdle, J. J., & Lindenberger, U. (2013). Structural equation model trees. Psychological Methods, 18, 71–86.
  • Brandmaier, A. M., Oertzen, T. v., McArdle, J. J., & Lindenberger, U. (2014). Exploratory data mining with structural equation model trees. In J. J. McArdle & G. Ritschard (Eds.), Contemporary issues in exploratory data mining in the behavioral sciences (pp. 96–127). New York, NY: Routledge.
  • Brodley, E., & Utgoff, P. E. (1995). Multivariate decision trees. Machine Learning, 19, 45–77.
  • Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society B, 39, 1–38.
  • Genolini, C., & Falissard, B. (2010). KmL: K-means for longitudinal data. Computational Statistics, 25, 317–332.
  • Hayes, T., Usami, S., Jacobucci, R., & McArdle, J. J. (2015). Using classification and regression trees (CART) and random forests to analyze attrition: Results from two simulations. Psychology and Aging, 30, 911–929.
  • Henson, J. M., Reise, S. P., & Kim, K. H. (2007). Detecting mixtures from structural model differences using latent variable mixture modeling: A comparison of relative model fit statistics. Structural Equation Modelling, 14, 202–226.
  • Hoshino, T. (2001). Bayesian inference for finite mixtures in confirmatory factor analysis . Behaviormetrika, 28, 37–64.
  • Kohavi, R. (1995). A study of cross-validation and bootstrap for accuracy estimation and model selection. In C. Mellish (Ed.), International Joint Conference on Artificial Intelligence (Vol. 14, pp. 1137–1145). Los Altos, CA: Morgan Kaufmann.
  • Lee, S. X., & McLachlan, G. J. (2013). EMMIXuskew: An R package for fitting mixtures of multivariate skew distributions via the EM algorithm. Journal of Statistical Software, 55, 1–22.
  • Lee, S. X., & McLachlan, G. J. (2014). Finite mixtures of multivariate skew -distributions: Some recent and new results. Statistics and Computing, 24, 181–202.
  • Leiby, B. E., Sammel, M. D., Ten Have, T. R., & Lynch, K. G. (2009). Identification of multivariate responders and non-responders by using Bayesian growth curve latent class models. Journal of the Royal Statistical Society Series C, 58, 505–524.
  • Lin, T. I., Wu, P. H., McLachlan, G. J., Lee, S. X. (2013). The skew-t factor analysis model. arXiv preprint arXiv:1310.5336
  • Little, R., & Rubin, D. (2002). Statistical analysis with missing data (2nd ed). New York, NY: Wiley.
  • Little, T. D., Schnabel, K. U., & Baumert, J. (Eds.). (2000). Modeling longitudinal and multiple group data: Practical issues, applied approaches, and specific examples. Mahwah, NJ: Erlbaum.
  • Lo, Y., Mendell, N. R., & Rubin, D. B. (2001). Testing the number of components in a normal mixture. Biometrika, 88, 767–778.
  • Martin, D. P. (2015). Efficiently exploring multilevel data with recursive partitioning (Unpublished doctoral dissertation) University of Virginia, Charlottesville, VA.
  • Miller, P.J., Lubke, G.H., McArtor, D.B., & Bergeman, C.S. (2015). Finding structure in data using multivariate tree boosting. arXiv:1511.02025.
  • McArdle, J. J. (2009). Latent variable modeling of differences and changes with longitudinal data. Annual Review of Psychology, 60, 577–605.
  • McArdle, J. J., & Epstein, D. (1987). Latent growth curves within developmental structural equation models. Child Development, 58, 110–133
  • McArdle, J. J., & Hamagami, F. (2001). Latent difference score structural models for linear dynamic analyses with incomplete longitudinal data. In L. Collins & A. Sayer (Eds.), New methods for the analysis of change (pp. 137–175). Washington, DC: American Psychological Association.
  • McArdle, J. J., Hamagami, F., Jones, K., Jolesz, F., Kikinis, R., Spiro, A., & Albert, M. S. (2004). Structural modeling of dynamic changes in memory and brain structure using longitudinal data from the normative aging study. Journal of Gerontology: Psychological Science, 59, 294–304.
  • McArdle, J. J., & Nesselroade, J. R. (2014). Longitudinal data analysis using structural equation models. Washington, DC: American Psychological Association.
  • McLachlan, G. J. & Peel, D. (1998). Robust cluster analysis via mixtures of multivariate t-distributions. In A. Amin, D. Dori, P. Pudil, H. Freeman (Eds.), Lecture notes in computer science (Vol. 1451, pp. 658–666). Berlin, Germany: Springer-Verlag.
  • McLachlan, G., & Peel, D. A. (2000). Finite mixture models. New York, NY: Wiley.
  • Merkle, E. C., & Zeileis, A. (2011). Generalized measurement invariance tests with application to factor analysis (Working Paper No. 2011–09). Retrieved from http://EconPapers.RePEc.org/RePEc:inn:wpaper:2011-09
  • Meredith, W., & Tisak, J. (1984, July). On “Tuckerizing curves” paper presented at the annual meeting of the Psychometric Society, Santa Barbara, CA.
  • Meredith, W., & Tisak, J. (1990). Latent curve analysis. Psychometrika, 55, 107–122.
  • Morgan, J. N. & Sonquist, J. A. (1963). Ploblems in the analysis of survey data, and a proposal. Journal of the American Statistical Association, 28, 415–435.
  • Muthén, L. K., & Muthén, B. O. (1998–2010). mplus user’s guide, (6th edition). Los Angeles, CA: Muthén & Muthén.
  • Nagin, D. S. (1999). Analyzing developmental trajectories: A semi-parametric, group-based approach. Psychological Methods, 4, 139–157.
  • Nagin, D. S., & Tremblay, R. E. (2005). Developmental trajectory groups: Fact or a useful statistical fiction? Criminology, 43, 873–904.
  • Neelon, B., Swamy, G. K., Burgette, L. F., & Miranda, M. L. (2011). A Bayesian growth mixture model to examine maternal hypertension and birth outcomes. Statistics in Medicine, 30, 2721–2735.
  • Nylund, K. L., Asparouhov, T., & Muthén, B. (2007). Deciding on the number of classes in latent class analysis and growth mixture modeling: A Monte Carlo simulation study. Structural Equation Modeling, 14, 535–569.
  • R Core Team. (2014). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing, Retrieved Form http://www.R-project.org/
  • Ram, N., & Grimm, K. J. (2009). Methods and measures: Growth mixture modeling: A method for identifying differences in longitudinal change among unobserved groups. International Journal of Behavioral Development, 33, 565–576.
  • Rosseel, Y. (2012). lavaan: An R package for structural equation modeling. Journal of Statistical Software, 48, 1–36. Retrieved From http://www.jstatsoft.org/v48/i02/
  • Sanchez, G. (2009). PATHMOX approach: Segmentation trees in partial least squares path modeling (Unpublished doctoral dissertation). Universitat Politecnica de Catalunya, Catalonia, Spain.
  • Schafer, J. L., & Graham, J. W. (2002). Missing data: Our view of the state of the art. Psychological Methods, 7, 147–177.
  • Schwarz, G. (1978). Estimating the dimension of a model. Annals of Statistics, 6, 461–464.
  • Sclove, L. S. (1987). Application of model-selection criteria to some problems in multivariate analysis. Psychometrika, 52, 333–343.
  • Sonquist, J. A., & Morgan, J. N. (1964). The detection of interaction effects: A report on a computer program for the selection of optimal combinations of explanatory variables (No. 35). Ann Arbor: University of Michigan, Institute for Social Research, Survey Research Center.
  • Todo, N., & Usami, S. (2016). Fitting unstructured finite mixture models in longitudinal design: A recommendation for model selection and estimation of the number of classes. Structural Equation Modeling, 23, 695–712.
  • Usami, S. (2012). Senzai henka tokuten moderu ni motoduku juudan data no gunkan hikaku: kentei ryoku to senzai kurasu suuno suitei ni shouten wo atete [Group comparison of longitudinal data using latent change score model: Focusing on estimation of statistical power and estimation of the number of latent classes]. (Unpublished doctoral dissertation). University of Tokyo,Tokyo, Japan.
  • Usami, S. (2014a). Constrained k-means on cluster proportion and distances among clusters for longitudinal data analysis. Japanese Psychological Research, 56, 361–372.
  • Usami, S. (2014b). Performances of information criteria for model selection in a latent growth curve mixture model. Journal of the Japanese Society of Computational Statistics, 27, 17–48.
  • Usami, S., Hayes, T., & McArdle, J. J. (2015a). Inferring longitudinal relationships between variables: Model selection between the latent change score and autoregressive cross-lagged factor models. Structural Equation Modeling, 23, 331–342.
  • Usami, S., Hayes, T., & McArdle, J. J. (2015b). On the mathematical relationship between latent change score model and autoregressive cross-lagged factor approaches: Cautions for inferring causal relationship between variables. Multivariate Behavioral Research, 50, 676–687.
  • Vrieze, S. I. (2012). Model selection and psychological theory: A discussion of the differences between the Akaike information criterion (AIC) and the Bayesian information criterion (BIC). Psychological Methods, 17, 228–243.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.