350
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

The Impact of Moderate Priors For Bayesian Estimation and Testing of Item Factor Analysis Models When Maximum Likelihood is Unsuitable

References

  • Asparouhov, T., & Muthén, B. (2010). Bayesian analysis of latent variable models using Mplus. Retrieved from https://www.statmodel.com/techappen.shtml
  • Bainter, S. A. (2017). Bayesian estimation for item factor analysis models with sparse categorical indicators. Multivariate Behavioral Research, 52(5), 593–615.
  • Bayarri, M. J., & Berger, J. O. (2000). P values for composite null models. Journal of the American Statistical Association, 95(452), 1127.
  • Béguin, A. A., & Glas, C. A. W. (2001). MCMC estimation and some model-fit analysis of multidimensional IRT models. Psychometrika, 66(4), 541–562.
  • Bock, R. D., & Aitkin, M. (1981). Marginal maximum likelihood estimation of item parameters: Application of an EM algorithm. Psychometrika, 46, 443–459.
  • Bollen, K. A. & Bauldry, S. (2010). Model identification and computer algebra. Sociological Methods & Research, 39(2), 127–156.
  • Cai, L. (2010). Metropolis-Hastings Robbins-Monro algorithm for confirmatory item factor analysis. Journal of Educational and Behavioral Statistics, 35(3), 307–335.
  • Cai, L., & Hansen, M. (2013). Limited-information goodness-of-fit testing of hierarchical item factor models. British Journal of Mathematical and Statistical Psychology, 66(2), 245–276.
  • Cai, L., Maydeu-Olivares, A., Coffman, D. L., & Thissen, D. (2006). Limited-information goodness-of-fit testing of item response theory models for sparse 2P tables. British Journal of Mathematical and Statistical Psychology, 59(1), 173–194.
  • Carpenter, B., Gelman, A., Hoffman, M. D., Lee, D., Goodrich, B., Betancourt, M., … Riddell, A. (2017). Stan : A probabilistic programming language. Journal of Statistical Software, 76(1), 1–32.
  • Chen, W.-H., & Thissen, D. (1997). Local dependence indexes for item pairs using item response theory. Journal of Educational and Behavioral Statistics, 22(3), 265.
  • Duane, S., Kennedy, A. D., Pendleton, B. J., & Roweth, D. (1987). Hybrid monte carlo. Physics Letters B, 195(2), 216–222.
  • Edwards, M. C. (2010). A Markov chain Monte Carlo approach to confirmatory item factor analysis. Psychometrika, 75(3), 474–497.
  • Ferrando, P. J., & Lorenzo-Seva, U. (2001). Checking the appropriateness of item response theory models by predicting the distribution of observed scores: The program Eo-Fit. Educational and Psychological Measurement, 61(5), 895–902.
  • Forero, C. G., & Maydeu-Olivares, A. (2009). Estimation of IRT graded response models: Limited versus full information methods. Psychological Methods, 14(3), 275–299.
  • Fox, J. P., & Glas, C. A. (2003). Bayesian modeling of measurement error in predictor variables using item response theory. Psychometrika, 68(2), 169–191.
  • Furr, D., Lee, S., Lee, J., & Rabe-Hesketh, S. (2016). Two-parameter logistic item response model. Retrieved from http://mc-stan.org/users/documentation/case-studies/tutorial_twopl.html
  • Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., & Vehtari, A. (2013). Bayesian Data Analysis. Boca Raton, FL: Chapman & Hall/CRC Press.
  • Gelman, A., & Hill, J.. (2007). Data analysis using regression and multilevel/hierarchical models (Analytical methods for social research). Cambridge, New York, NY: Cambridge University Press.
  • Gelman, A., Meng, X.-L., & Stern, H. (1996). Posterior predictive assessment of model fitness via realized discrepancies. Statistica Sinica, 6, 733–807.
  • Gelman, A., & Rubin, D. (1992). Inference from iterative simulation using multiple sequences. Statistical Science, 7(4), 457–472.
  • Gustafson, P., & Clarke, B. (2004). Decomposing posterior variance. Journal of Statistical Planning and Inference, 119(2), 311–327.
  • Hallquist, M., & Wiley, J. (2014). MplusAutomation: Automating Mplus model estimation and interpretation. R Package Version, 0–6.
  • Hoffman, M., & Gelman, A. (2014). The no-U-turn sampler: Adaptively setting path lengths in hamiltonian Monte Carlo. Journal of Machine Learning Research, 15, 1593–1623.
  • Levy, R. (2011). Bayesian data-model fit assessment for structural equation modeling. Structural Equation Modeling, 18(4), 663–685.
  • Levy, R. (2016). Bayesian psychometric modeling. Boca Raton, FL: CRC Press, Taylor & Francis Group.
  • Levy, R., Xu, Y., Yel, N., & Svetina, D. (2015). A standardized generalized dimensionality discrepancy measure and a standardized model-based covariance for dimensionality assessment for multidimensional models. Journal of Educational Measurement, 52(2), 144–158.
  • Li, Y., Bolt, D. M., & Fu, J. (2006). A comparison of alternative models for testlets. Applied Psychological Measurement, 30(1), 3–21.
  • Loken, E. (2005). Identification constraints and inference in factor models. Structural Equation Modeling, 12, 232–244.
  • Lunn, D., Spiegelhalter, D., Thomas, A., & Best, N. (2009). The BUGS project: Evolution, critique and future directions. Statistics in Medicine, 28, 3049–3067.
  • Luo, Y., & Al-Harbi, K. (2017). Performances of LOO and WAIC as IRT model selection methods. Psychological Test and Assessment Modeling, 59(2), 183–205.
  • MacCallum, R. C. (2009). Factor analysis. In R. E. Millsap & A. Maydeu-Olivares (Eds.), The SAGE handbook of quantitative methods in psychology (pp. 124–147). London, UK: SAGE Publications Ltd.
  • Maydeu-Olivares, A., & Joe, H. (2006). Limited information goodness-of-fit testing in multidimensional contingency tables. Psychometrika, 71(4), 713–732.
  • McNeish, D. (2016). On using Bayesian methods to address small sample problems. Structural Equation Modeling: A Multidisciplinary Journal, 23(5), 750–773.
  • Monnahan, C. C., Thorson, J. T., & Branch, T. A. (2017). Faster estimation of Bayesian models in ecology using Hamiltonian Monte Carlo. Methods in Ecology and Evolution, 8(3), 339–348.
  • Monroe, S., & Cai, L. (2015). Evaluating structural equation models for categorical outcomes: A new test statistic and a practical challenge of interpretation. Multivariate Behavioral Research, 50(6), 569–583.
  • Moshagen, M., & Musch, J. (2014). Sample size requirements of the robust weighted least squares estimator. Methodology, 10(2), 60–70.
  • Muthén, L. K., & Muthén, B. O. (1998–2017). Mplus user’s guide (7th ed.). Los Angeles, CA: Muthén & Muthén.
  • Neal, R. M. (1993). Probabilistic inference using Markov chain Monte Carlo methods Technical report CRG-TR-93-1. Canada: University of Toronto.
  • Olsson, U. (1979). Maximum likelihood estimation of the polychoric correlation coefficient. Psychometrika, 44(4), 443–460.
  • Plummer (2003). JAGS: A program for analysis of Bayesian graphical models using Gibbs sampling. Retrieved from http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.13.3406
  • R Core Team. (2017). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Retrieved from https://www.R-project.org/
  • SAS Institute Inc. (2012). SAS/STAT user’s guide: Version 9 (Vol. 3). Cary, NC: SAS Institute, Inc.
  • Savalei, V. (2011). What to do about zero frequency cells when estimating polychoric correlations. Structural Equation Modeling, 18(2), 253–273.
  • Sinharay, S., Johnson, M. S., & Stern, H. S. (2006). Posterior predictive assessment of item response theory models. Applied Psychological Measurement, 30(4), 298–321.
  • Spiegelhalter, D. J., Best, N. G., Carlin, B. P., & Van Der Linde, A. (2002). Bayesian measures of model complexity and fit. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 64(4), 583–639.
  • Stan Development Team. (2018). RStan: The R interface to stan. Retrieved from http://mc-stan.org/
  • Swartz, R. J., Schwartz, C., Basch, E., Cai, L., Fairclough, D. L., & McLeod, L., & SAMSI Psychometric Program Longitudinal Assessment of Patient-Reported Outcomes Working Group. (2011). The king’s foot of patient-reported outcomes: Current practices and new developments for the measurement of change. Quality of Life Research: an International Journal of Quality of Life Aspects of Treatment, Care and Rehabilitation, 20(8), 1159–1167.
  • Thomas, M. L. (2011). The value of item response theory in clinical assessment: A review. Assessment, 18(3), 291–307.
  • Vehtari, A., Gabry, J., Yao, Y., & Gelman, A. (2018). loo: Efficient leave-one-out cross-validation and WAIC for Bayesian models. Retrieved from https://CRAN.R-project.org/package=loo
  • Vehtari, A., Gelman, A., & Gabry, J. (2017). Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC. Statistics and Computing, 27(5), 1413–1432.
  • Watanabe, S. (2010). Asymptotic equivalence of Bayes cross validation and widely applicable information criterion in singular learning theory. Journal of Machine Learning Research, 11, 3571–3594.
  • Wirth, R. J., & Edwards, M. C. (2007). Item factor analysis: Current approaches and future directions. Psychological Methods, 12, 58–79.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.