267
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

A Dynamic Approach to Control for Cohort Differences in Maturation Speed Using Accelerated Longitudinal Designs

Pages 761-777 | Received 12 Oct 2022, Accepted 26 Dec 2022, Published online: 24 Jan 2023

References

  • Bauer, D. J. (2017). A more general model for testing measurement invariance and differential item functioning. Psychological Methods, 22, 507–526. https://doi.org/10.1037/met0000077
  • Bell, R. Q. (1953). Convergence: An accelerated longitudinal approach. Child Development, 24, 145–152. https://doi.org/10.2307/1126345
  • Bell, R. Q. (1954). An experimental test of the accelerated longitudinal approach. Child Development, 25, 281–286. https://doi.org/10.2307/1126058
  • Boker, S. M., Neale, M. C., Maes, H. H., Wilde, M. J., Spiegel, M., Brick, T. R., Estabrook, R., Bates, T. C., & Mehta, P. (2018). OpenMx user guide (p. 195). https://openmx.ssri.psu.edu/documentation
  • Brown, C. (2007). Differential equations: A modeling approach. SAGE.
  • Cáncer, P. F., Estrada, E., Ollero, M. J. F., & Ferrer, E. (2021). Dynamical properties and conceptual interpretation of latent change score models. Frontiers in Psychology, 12, 696419. https://doi.org/10.3389/fpsyg.2021.696419
  • Chow, S.-M., Ho, M. R., Hamaker, E. L., & Dolan, C. V. (2010). Equivalence and differences between structural equation modeling and state-space modeling techniques. Structural Equation Modeling, 17, 303–332. https://doi.org/10.1080/10705511003661553
  • Cole, T. J. (2000). Secular trends in growth. The Proceedings of the Nutrition Society, 59, 317–324. https://doi.org/10.1017/S0029665100000355
  • Cole, T. J. (2003). The secular trend in human physical growth: A biological view. Economics and Human Biology, 1, 161–168. https://doi.org/10.1016/S1570-677X(02)00033-3
  • Collins, L. M., Schafer, J. L., & Kam, C.-M. (2001). A comparison of inclusive and restrictive strategies in modern missing data procedures. Psychological Methods, 6, 330–351. https://doi.org/10.1037/1082-989X.6.4.330
  • de Haan-Rietdijk, S., Voelkle, M. C., Keijsers, L., & Hamaker, E. L. (2017). Discrete- vs. continuous-time modeling of unequally spaced experience sampling method data. Frontiers in Psychology, 8, 1849. https://doi.org/10.3389/fpsyg.2017.01849
  • Deboeck, P. R., & Preacher, K. J. (2016). No need to be discrete: A method for continuous time mediation analysis. Structural Equation Modeling, 23, 61–75. https://doi.org/10.1080/10705511.2014.973960
  • Dodge, H. H., Zhu, J., Lee, C.-W., Chang, C.-C H., & Ganguli, M. (2014). Cohort effects in age-associated cognitive trajectories. The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 69, 687–694. https://doi.org/10.1093/gerona/glt181
  • Drewelies, J., Deeg, D. J. H., Huisman, M., & Gerstorf, D. (2018). Perceived constraints in late midlife: Cohort differences in the Longitudinal Aging Study Amsterdam (LASA). Psychology and Aging, 33, 754–768. https://doi.org/10.1037/pag0000276
  • Driver, C. C., & Voelkle, M. C. (2018). Hierarchical Bayesian continuous time dynamic modeling. Psychological Methods, 23, 774–799. https://doi.org/10.1037/met0000168
  • Duncan, S. C., Duncan, T. E., & Hops, H. (1996). Analysis of longitudinal data within accelerated longitudinal designs. Psychological Methods, 1, 236–248. https://doi.org/10.1037/1082-989X.1.3.236
  • Eckert-Lind, C., Busch, A. S., Petersen, J. H., Biro, F. M., Butler, G., Bräuner, E. V., & Juul, A. (2020). Worldwide secular trends in age at pubertal onset assessed by breast development among girls: A systematic review and meta-analysis. JAMA Pediatrics, 174, e195881. https://doi.org/10.1001/jamapediatrics.2019.5881
  • Enders, C. K. (2011). Missing not at random models for latent growth curve analyses. Psychological Methods, 16, 1–16. https://doi.org/10.1037/a0022640
  • Enders, C. K., & Peugh, J. L. (2004). Using an EM covariance matrix to estimate structural equation models with missing data: Choosing an adjusted sample size to improve the accuracy of inferences. Structural Equation Modeling, 11, 1–19. https://doi.org/10.1207/S15328007SEM1101_1
  • Estrada, E., Bunge, S. A., & Ferrer, E. (2021). Controlling for cohort effects in accelerated longitudinal designs using continuous- and discrete-time dynamic models. Psychological Methods. Advance online publication. https://doi.org/10.1037/met0000427
  • Estrada, E., & Ferrer, E. (2019). Studying developmental processes in accelerated cohort-sequential designs with discrete- and continuous-time latent change score models. Psychological Methods, 24, 708–734. https://doi.org/10.1037/met0000215
  • Estrada, E., Ferrer, E., Karama, S., Román, F. J., & Colom, R. (2019). Time-lagged associations between cognitive and cortical development from childhood to early adulthood. Developmental Psychology, 55, 1338–1352. https://doi.org/10.1037/dev0000716
  • Fandakova, Y., Selmeczy, D., Leckey, S., Grimm, K. J., Wendelken, C., Bunge, S. A., & Ghetti, S. (2017). Changes in ventromedial prefrontal and insular cortex support the development of metamemory from childhood into adolescence. Proceedings of the National Academy of Sciences of the United States of America, 114, 7582–7587. https://doi.org/10.1073/pnas.1703079114
  • Ferrer, E., & McArdle, J. J. (2003). Alternative structural models for multivariate longitudinal data analysis. Structural Equation Modeling, 10, 493–524. https://doi.org/10.1207/S15328007SEM1004_1
  • Ferrer, E., & McArdle, J. J. (2004). An experimental analysis of dynamic hypotheses about cognitive abilities and achievement from childhood to early adulthood. Developmental Psychology, 40, 935–952. https://doi.org/10.1037/0012-1649.40.6.935
  • Ferrer, E., McArdle, J. J., Shaywitz, B. A., Holahan, J. M., Marchione, K., & Shaywitz, S. E. (2007). Longitudinal models of developmental dynamics between reading and cognition from childhood to adolescence. Developmental Psychology, 43, 1460–1473. https://doi.org/10.1037/0012-1649.43.6.1460
  • Ferrer, E., O’Hare, E., & Bunge, S. (2009). Fluid reasoning and the developing brain. Frontiers in Neuroscience, 3, 3. https://doi.org/10.3389/neuro.01.003.2009
  • Ferrer, E., Shaywitz, B. A., Holahan, J. M., Marchione, K., & Shaywitz, S. E. (2010). Uncoupling of reading and IQ over time: Empirical evidence for a definition of dyslexia. Psychological Science, 21, 93–101. https://doi.org/10.1177/0956797609354084
  • Finkel, D., Reynolds, C. A., McArdle, J. J., & Pedersen, N. L. (2007). Cohort differences in trajectories of cognitive aging. The Journals of Gerontology. Series B, Psychological Sciences and Social Sciences, 62, P286–P294. https://doi.org/10.1093/geronb/62.5.P286
  • Flora, D. B., & Curran, P. J. (2004). An empirical evaluation of alternative methods of estimation for confirmatory factor analysis with ordinal data. Psychological Methods, 9, 466–491. https://doi.org/10.1037/1082-989X.9.4.466
  • Gerstorf, D., Ram, N., Hoppmann, C., Willis, S. L., & Schaie, K. W. (2011). Cohort differences in cognitive aging and terminal decline in the Seattle Longitudinal Study. Developmental Psychology, 47, 1026–1041. https://doi.org/10.1037/a0023426
  • Green, C. T., Bunge, S. A., Briones Chiongbian, V., Barrow, M., & Ferrer, E. (2017). Fluid reasoning predicts future mathematical performance among children and adolescents. Journal of Experimental Child Psychology, 157, 125–143. https://doi.org/10.1016/j.jecp.2016.12.005
  • Gottfredson, N. C., Bauer, D. J., & Baldwin, S. A. (2014). Modeling change in the presence of nonrandomly missing data: Evaluating a shared parameter mixture model. Structural Equation Modeling, 21, 196–209. https://doi.org/10.1080/10705511.2014.882666
  • Gu, F., Preacher, K. J., Wu, W., & Yung, Y.-F. (2014). A computationally efficient state space approach to estimating multilevel regression models and multilevel confirmatory factor models. Multivariate Behavioral Research, 49, 119–129. https://doi.org/10.1080/00273171.2013.866537
  • Hoffman, L., Hofer, S. M., & Sliwinski, M. J. (2011). On the confounds among retest gains and age-cohort differences in the estimation of within-person change in longitudinal studies: A simulation study. Psychology and Aging, 26, 778–791. https://doi.org/10.1037/a0023910
  • Holahan, J. M., Ferrer, E., Shaywitz, B. A., Rock, D. A., Kirsch, I. S., Yamamoto, K., Michaels, R., Marchione, K. E., & Shaywitz, S. E. (2018). Growth in reading comprehension and verbal ability from grades 1 through 9. Journal of Psychoeducational Assessment, 36, 307–321. https://doi.org/10.1177/0734282916680984
  • Hu, Y., Boker, S., Neale, M., & Klump, K. L. (2014). Coupled latent differential equation with moderators: Simulation and application. Psychological Methods, 19, 56–71. https://doi.org/10.1037/a0032476
  • Hunter, M. D. (2018). State space modeling in an open source, modular, structural equation modeling environment. Structural Equation Modeling, 25, 307–324. https://doi.org/10.1080/10705511.2017.1369354
  • Jeličić, H., Phelps, E., & Lerner, R. M. (2009). Use of missing data methods in longitudinal studies: The persistence of bad practices in developmental psychology. Developmental Psychology, 45, 1195–1199. https://doi.org/10.1037/a0015665
  • Jeličić, H., Phelps, E., & Lerner, R. M. (2010). Why missing data matter in the longitudinal study of adolescent development: using the 4-H study to understand the uses of different missing data methods. Journal of Youth and Adolescence, 39, 816–835. https://doi.org/10.1007/s10964-010-9542-5
  • Ji, L., & Chow, S.-M. (2019). Methodological issues and extensions to the latent difference score framework 1. In E. Ferrer, S. M. Boker, & K. J. Grimm (Eds.), Longitudinal multivariate psychology (pp. 9–37). Routledge. https://doi.org/10.4324/9781315160542-2
  • Kail, R. V., & Ferrer, E. (2007). Processing speed in childhood and adolescence: Longitudinal models for examining developmental change. Child Development, 78, 1760–1770. https://doi.org/10.1111/j.1467-8624.2007.01088.x
  • Kalman, R. E. (1960). A new approach to linear filtering and prediction problems. Journal of Basic Engineering, 82, 35–45. https://doi.org/10.1115/1.3662552
  • Kalman, R. E., & Bucy, R. S. (1961). New results in linear filtering and prediction theory. Journal of Basic Engineering, 83, 95–108. https://doi.org/10.1115/1.3658902
  • Laird, N. M. (1988). Missing data in longitudinal studies. Statistics in Medicine, 7, 305–315. https://doi.org/10.1002/sim.4780070131
  • McArdle, J. J. (2001). A latent difference score approach to longitudinal dynamic structural analysis. In R. Cudeck, S. du Toit, & D. Sörbom (Eds.), Structural equation modeling, present and future: A Festschrift in honor of Karl Jöreskog (pp. 7–46). Scientific Software International.
  • McArdle, J. J. (2009). Latent variable modeling of differences and changes with longitudinal data. Annual Review of Psychology, 60, 577–605. https://doi.org/10.1146/annurev.psych.60.110707.163612
  • McArdle, J. J., Ferrer-Caja, E., Hamagami, F., & Woodcock, R. W. (2002). Comparative longitudinal structural analyses of the growth and decline of multiple intellectual abilities over the life span. Developmental Psychology, 38, 115–142. https://doi.org/10.1037/0012-1649.38.1.115
  • McArdle, J. J., & Hamagami, F. (2001). Latent difference score structural models for linear dynamic analyses with incomplete longitudinal data. In L. M. Collins & A. G. Sayer (Eds.), New methods for the analysis of change (pp. 139–175). American Psychological Association. https://doi.org/10.1037/10409-005
  • McArdle, J. J., & Woodcock, R. W. (1997). Expanding test–retest designs to include developmental time-lag components. Psychological Methods, 2, 403–435. https://doi.org/10.1037/1082-989X.2.4.403
  • Miyazaki, Y., & Raudenbush, S. W. (2000). Tests for linkage of multiple cohorts in an accelerated longitudinal design. Psychological Methods, 5, 44–63. https://doi.org/10.1037/1082-989x.5.1.44
  • Neale, M. C., Hunter, M. D., Pritikin, J. N., Zahery, M., Brick, T. R., Kirkpatrick, R. M., Estabrook, R., Bates, T. C., Maes, H. H., & Boker, S. M. (2016). OpenMx 2.0: Extended structural equation and statistical modeling. Psychometrika, 81, 535–549. https://doi.org/10.1007/s11336-014-9435-8
  • Nesselroade, J. R., & Baltes, P. B. (1979). Longitudinal research in the study of behavior and development. Academic Press. https://pure.mpg.de/pubman/faces/ViewItemOverviewPage.jsp?itemId=item_3005291
  • Oravecz, Z., Tuerlinckx, F., & Vandekerckhove, J. (2011). A hierarchical latent stochastic differential equation model for affective dynamics. Psychological methods, 16, 468–490. https://doi.org/10.1037/a0024375
  • Orth, U., Maes, J., & Schmitt, M. (2015). Self-esteem development across the life span: A longitudinal study with a large sample from Germany. Developmental Psychology, 51, 248–259. https://doi.org/10.1037/a0038481
  • Oud, J. H. L., & Delsing, M. J. M. H. (2010). Continuous time modeling of panel data by means of SEM. In K. van Montfort, J. H. L. Oud, & A. Satorra (Eds.), Longitudinal research with latent variables (pp. 201–244). Springer. https://doi.org/10.1007/978-3-642-11760-2_7
  • Oud, J. H. L., & Jansen, R. A. R. G. (2000). Continuous time state space modeling of panel data by means of sem. Psychometrika, 65, 199–215. https://doi.org/10.1007/BF02294374
  • Oud, J. H. L., & Singer, H. (2008). Continuous time modeling of panel data: SEM versus filter techniques. Statistica Neerlandica, 62, 4–28. https://doi.org/10.1111/j.1467-9574.2007.00376.x
  • Ryan, O., Kuiper, R. M., & Hamaker, E. L. (2018). A continuous-time approach to intensive longitudinal data: What, why, and how? In K. van Montfort, J. H. L. Oud, & M. C. Voelkle (Eds.), Continuous time modeling in the behavioral and related sciences (pp. 27–54). Springer International Publishing. https://doi.org/10.1007/978-3-319-77219-6_2
  • Schaie, K. W. (1965). A general model for the study of developmental problems. Psychological Bulletin, 64, 92–107. https://doi.org/10.1037/h0022371
  • Schmitt, S. A., Geldhof, G. J., Purpura, D. J., Duncan, R., & McClelland, M. M. (2017). Examining the relations between executive function, math, and literacy during the transition to kindergarten: A multi-analytic approach. Journal of Educational Psychology, 109, 1120–1140. https://doi.org/10.1037/edu0000193
  • Shaywitz, S. E., Shaywitz, B. A., Fletcher, J. M., & Escobar, M. D. (1990). Prevalence of reading disability in boys and girls: Results of the Connecticut Longitudinal Study. JAMA, 264, 998–1002. https://doi.org/10.1001/jama.1990.03450080084036
  • Vainikainen, M.-P., & Hautamäki, J. (2022). Three studies on learning to learn in Finland: Anti-Flynn effects 2001–2017. Scandinavian Journal of Educational Research, 66, 43–58. https://doi.org/10.1080/00313831.2020.1833240
  • Van Der Maas, H. L. J., Dolan, C. V., Grasman, R. P. P. P., Wicherts, J. M., Huizenga, H. M., & Raijmakers, M. E. J. (2006). A dynamical model of general intelligence: The positive manifold of intelligence by mutualism. Psychological Review, 113, 842–861. https://doi.org/10.1037/0033-295X.113.4.842
  • van Montfort, K., Oud, J. H. L., & Voelkle, M. C. (2018). Continuous time modeling in the behavioral and related sciences. Springer.
  • Voelkle, M. C., Gische, C., Driver, C. C., & Lindenberger, U. (2018). The role of time in the quest for understanding psychological mechanisms. Multivariate Behavioral Research, 53, 782–805. https://doi.org/10.1080/00273171.2018.1496813
  • Voelkle, M. C., & Oud, J. H. L. (2013). Continuous time modelling with individually varying time intervals for oscillating and non-oscillating processes. The British Journal of Mathematical and Statistical Psychology, 66, 103–126. https://doi.org/10.1111/j.2044-8317.2012.02043.x
  • Voelkle, M. C., & Oud, J. H. L. (2015). Relating latent change score and continuous time models. Structural Equation Modeling, 22, 366–381. https://doi.org/10.1080/10705511.2014.935918
  • Voelkle, M. C., Oud, J. H. L., Davidov, E., & Schmidt, P. (2012). An SEM approach to continuous time modeling of panel data: Relating authoritarianism and anomia. Psychological Methods, 17, 176–192. https://doi.org/10.1037/a0027543
  • Wang, C. Y., Huang, Y., Chao, E. C., & Jeffcoat, M. K. (2008). Expected estimating equations for missing data, measurement error, and misclassification, with application to longitudinal nonignorable missing data. Biometrics, 64, 85–95. https://doi.org/10.1111/j.1541-0420.2007.00839.x
  • Wendelken, C., Ferrer, E., Ghetti, S., Bailey, S. K., Cutting, L., & Bunge, S. A. (2017). Frontoparietal structural connectivity in childhood predicts development of functional connectivity and reasoning ability: A large-scale longitudinal investigation. The Journal of Neuroscience, 37, 8549–8558. https://doi.org/10.1523/JNEUROSCI.3726-16.2017
  • Zhang, P.-D., Lv, Y.-B., Li, Z.-H., Yin, Z.-X., Li, F.-R., Wang, J.-N., Zhang, X.-R., Zhou, J.-H., Wu, X.-B., Duan, J., Mao, C., & Shi, X.-M. (2020). Age, period, and cohort effects on activities of daily living, physical performance, and cognitive functioning impairment among the oldest-old in China. The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 75, 1214–1221. https://doi.org/10.1093/gerona/glz196

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.