33
Views
10
CrossRef citations to date
0
Altmetric
Original Article

Exogenous GSH protection during hypoxia-reoxygenation of the isolated rat heart: Impact of hypoxia duration

&
Pages 41-55 | Received 26 Nov 1998, Published online: 07 Jul 2009

References

  • Guarnieri C., Flamigni F., Caldarera C.M. Role of oxygen in the cellular damage induced by reoxygenation of hypoxic heart. Journal of Molecular and Cellular Cardiology 1980; 12: 797–808
  • Curello S., Ceconi C., Bigoli C., Ferrari R., Albertini A., Guarnieri C. Changes in the cardiac glutathione status after ischemia and reperfusion. Experientia 1985; 41: 42–43
  • Ceconi C., Cuerllo S., Cargnoni A., Ferrari R., Albertini A., Visioli O. The role of glutathione status in the protection against ischemic and reperfusion damage: Effects of N-acetyl cysteine. Journal of Molecular and Cellular Cardiology 1988; 20: 5–13
  • Darley-Usmar V.M., O'Leary V.O., Stone D. The glutathione status of perfused rat hearts subjected to hypoxia and reoxygenation: the oxygen paradox. Free Radical Research Communications 1989; 6: 261–267
  • Park Y., Kanekal S., Kehrer J.P. Oxidative changes in hypoxic heart tissue. American Journal of Physiology 1991; 260: H1395–H1405, (Heart Circ. Physiol. 29)
  • Chatham J.C., Seymour A.L., Harmsen E., Radda G.K. Depletion of myocardial glutathione: its effects on heart function and metabolism during ischemia and reperfusion. Cardiovascular Research 1988; 22: 833–839
  • Connaughton M., Kelly F.J., Haddock P.S., Hearse D.J., Shattock M.J. Ventricular arrhythmias induced by ischemia-reperfusion are unaffected by myocardial glutathione depletion. Journal of Molecular and Cellular Cardiology 1996; 28: 679–688
  • Werns S.W., Fantone J.C., Ventura A., Lucchesi B.R. Myocardial glutathione depletion impairs recovery of isolated blood-perfused hearts after global ischemia. Journal of Molecular and Cellular Cardiology 1992; 24: 1215–1220
  • Singh A., Lee K.J., Lee C.Y., Goldfarb R.D., Tsan M. Relation between myocardial glutathione content and extent of ischemia/reperfusion injury. Circulation 1989; 80: 7965–1804
  • Blaustein A., Deneke S.M., Stolz R.I., Baxter D., Healey N., Fanburg B.L. Myocardial glutathione depletion impairs recovery after short periods of ischemia. Circulation 1989; 80: 1449–1457
  • Seiler K.S., Kehrer J.P., Starnes J.W. Exogenous glutathione attenuates stunning following intermittent hypoxia in isolated rat hearts. Free Radical Research 1996; 24: 115–122
  • Tani M. Effects of anti-free radical agents on Na+, Ca-+, and function in reperfused rat hearts. American Journal of Physiology 1990; 259: H137–H143, (Heart Circ. Physiol. 28)
  • Reimer K.A., Lowe J.E., Rasmussen M.M., Jennings R.B. The wavefront phenomenon of ischemic cell death. I. Myocardial infarct size vs. duration of coronary artery occlusion in dogs. Circulation 1977; 56: 786–794
  • Opie L.H. Reperfusion injury and its pharmacological modification. Circulation 1989; 80: 1049–1062
  • Henry T.D., Archer S.L., Nelson D., Weir E.K., From A.H.L. Postischemic oxygen radical production varies with duration of ischemia. American Journal of Physiology 1993; 264: H1478–H1484, (Heart Circ. Physiol. 33)
  • Neely J.R., Rovetto M.J. Techniques for perfusing isolated rat hearts. Methods in Enzymology, S.P. Colowick, N.O. Kaplan. Academic, New York 1975; 39: 43–60, In
  • Combs A.B., Pan S.J., Mull R.L. Inexpensive Apple Macintosh-based electrocardiography in small animals. Toxicology Methods 1992; 2: 125–138
  • Ackerboom J.P.M., Sies H. Assay of glutathione disulfide and glutathione mixed disulfides in biological samples. Methods in Enzymology 1981; 77: 373–382
  • Tietz F. Enzymatic method for quantitative determination of nanogram amounts of total and oxidized glutathione: applications to mammalian blood and other tissues. Analytical Biochemistry 1969; 27: 502–522
  • Galinanes M., Ferrari R., Qiu Y., Cargnoni A., Ezrin A., Hearse D.J. PEG-SOD and myocardial antioxidant status during ischemia and reperfusion: dose response studies in the isolated blood perfused rabbit heart. Journal of Molecular and Cellular Cardiology 1992; 24: 1021–1030
  • Ferrari R., Ceconi C., Curello S., Cargnoni A., Alfieri O., Pardini A., Marzollo P., Visioli O. Oxygen free radicals and myocardial damage: protective role of thiol containing agents. American Journal of Medicine 1991; 91(Suppl. 3C)95–105
  • Anderson M.E., Powrie F., Puri R.N., Meister A. Glutathione monoethyl ester: preparation, uptake by tissues, and conversion to glutathione. Archives of Biochemistry and Biophysics 1985; 239: 538–548
  • Bhatnagar A., Srivastava S.K., Szabo G. Oxidative stress alters specific membrane currents in isolated cardiac myocytes. Circulation Research 1990; 67: 535–549
  • Kaneko M., Beanmish R.E., Dhalla N.S. Depression of heart sarcolemmal Ca++-pump activity by oxygen free radicals. American Journal of Physiology 1989; H368–H374, (Heart Circ. Physiol. 25)
  • Xie Z., Wang Y., Askari A., Huang W., Klaunig J.E., Askari A. Studies on the specificity of the effects of oxygen metabolites on cardiac sodium pump. Journal of Molecular and Cellular Cardiology 1990; 22: 911–920
  • Halliwell B. Superoxide, iron, vascular endothelium and reperfusion injury. Free Radical Research Communications 1989; 5: 315–318
  • Richardt G., Blessing R., Schomig A. Cardiac noradrenaline release accelerates adenosine formation in the ischemic rat heart: role of neuronal noradrenaline carrier and adrenergic receptors. Journal of Molecular and Cellular Cardiology 1994; 26: 1321–1328
  • Rump A.F., Rosen R., Klaus W. Cardioprotection by superoxide dismutase: a catecholamine-dependent process?. Anesthesia & Analgesia 1993; 76: 239–246
  • Wolin M.S., Belloni F.L. Superoxide anion selectively attenuates catecholamine-induced contractile tension in isolated rabbit aorta. American Journal of Physiology 1985; 249: H1127–H1133, (Heart Circ. Physiol. 18)
  • Sellke F.W., Shafique T., Ely D.L., Weintraub R.M. Coronary endothelial injury after cardiopulmonary bypass and ischemia cardioplegia is mediated by oxygen-derived free radicals. Circulation 1993; 88: II395–II400
  • Zweier J.L., Kuppusamy P., Lutty G.A. Measurement of endothelial cell free radical generation: evidence for a central mechanism of free radical injury in postischemic tissues. Proceedings of the National Academy of Science USA 1988; 85: 4046–4050
  • O'Neil C.A., Fu L.W., Halliwell B., Longhurst J.C. Hydroxyl radical production during myocardial ischemia and reperfusion in cats. American Journal of Physiology 1996; 271: H660–H667, (Heart Circ. Physiol. 40)
  • Tsan M., Danis E.H., Del Vecchio P.J., Rosano C.L. Enhancement of intracellular glutathione protects endothelial cells against antioxidant damage. Biochimica Biophysica Research Communications 1985; 127: 270–276
  • Tsan M., White J.E., Rosano C.L. Modulation of endothelial GSH concentrations: effect of exogenous GSH and GSH monoethyl ester. Journal of Applied Physiology 1989; 66: 1029–1034
  • Mickle D.A.G., Li R., Weisel R.D., Tumiati L.C., Wu T. Water-soluble antioxidant specificity against free radical injury using cultured human ventricular myocytes and fibroblasts and saphenous vein endothelial cells. Journal of Molecular and Cellular Cardiology 1990; 22: 1297–1304
  • Tsan M., Phillips P.G. L-2-Oxothiozolidine-4-carboxylate protects cultured endothelial cells against hyperoxia-induced injury. Inflammation 1988; 12: 113–121

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.