40
Views
13
CrossRef citations to date
0
Altmetric
Original Article

Iron mobilization by succinylacetone methyl ester in rats. A model study for hereditary tyrosinemia and porphyrias characterized by 5-Aminolevulinic acid overload

, , , , &
Pages 343-353 | Received 23 Feb 1999, Published online: 07 Jul 2009

References

  • Mitchell G.A., Lambert M.A., Tanguay R.M. Hereditary tyrosinemia. The Metabolic Basis of Inherited Diseases7th edn., C.R. Scriver, A.L. Beaudet, W.S. Sly, D. Valle. McGraw-Hill book Co., New York 1995; 1077–1106, In
  • Phaneuf D., Hadchouel M., Tanguay R.M., Bréchot C., Ferry N. Correction of fumarylacetoacetate hydrolase deficiency (type I tyrosinemia) in cultured human fibroblasts by retroviral-mediated gene transfer. Biochemical Biophysical Research Communications 1995; 208: 957–963
  • Goldsmith L.A., LaBerge C. Tyrosinemia and related disorders. The Metabolic Basis of Inherited Disease, C.R. Scriver, A.L. Beaudet, W.S. Sly, D. Valle. McGraw-Hill, New York 1989; I: 547–562, In
  • Berger R., van Faassen H., Smith G.P.A. Biochemical studies on the enzymatic deficiencies in hereditary tyrosinemia. Clinica Chimica Acta 1983; 134: 129–141
  • Ebert S.P., Hess R.A., Frykholm B.C., Tschudy D.P. Succinylacetone, a potent inhibitor of heme biosynthesis: effect on cell growth, heme content and δ-aminolevulinic acid dehydratase activity of malignant murine erythroleukemia cells. Biochemical Biophysical Research Communications 1979; 88: 1382–1390
  • Hindmarsh J.T. The porphyrias: recent advances. Clinical Chemistry 1986; 32: 1255–1263
  • Monteiro H.P., Abdalla D.S.P., Faljoni-Alário A., Bechara E.J.H. Generation of active oxygen species during coupled autoxidation of oxyhemoglobin and δ-aminolevulinic acid. Biochim. Biophys. Acta 1986; 881: 100–106
  • Bechara E.J.H., Medeiros M.H.G., Monteiro H.P., Hermes-Lima M., Pereira B., Demasi M., Costa C.A., Abdalla D.S.P., Onuki J., Wendel C.M.A., DiMascio P. A free radical hypothesis of lead poisoning and inborn porphyrias associated with 5-aminolevulinic acid overload. Química Nova 1993; 16: 385–392
  • Toyokuni S. Iron-induced carcinogenesis: the role of redox regulation. Free Radical Biology and Medicine 1996; 20: 553–566
  • Bechara E.J.H., Medeiros M.H.G., Catalani L.H., Soares C.H.L., Monteiro H.P., Abdalla D.S.P., Cristoff M., Hermes-Lima M., Pereira B., Demasi M., Nantes I.L., Costa C.A., Rocha M.E.M., DiMascio P., Wendel C.M.A., Onuki J., Penatti C.A.A., Pinto A.P. Enolizable carbonyl and imino metabolites may act as endogenous sources of reactive oxygen species. Ciência e Cultura 1995; 47: 346–357
  • Carvalho H., Bechara E.J.H., Meneghini R., Demasi M. The heme precursor δ-aminolevulinic acid induces activation of cytosolic iron regulatory protein 1. Biochemical Journal 1997; 328: 827–832
  • Fraga C.G., Onuki J., Lusesoli F., Bechara E.J.H., DiMascio P. 5-Aminolevulinic acid mediates the in vivo and in vitro formation of 8-hydroxy-2′-deoxyguanosine in DNA. Carcinogenesis 1994; 15: 2241–2244
  • Morehouse K.M., Moreno S.N.J., Mason R.P. The one-electron reduction of uroporphyrin I by hepatic microsomes. Archives of Biochemistry and Biophysics 1987; 257: 276–284
  • Battle A.M.del C. Porphyrins, porphyrias, cancer and photodynamic therapy — a model for carcinogenesis. Journal of Photochemistry and Photobiology B.: Biology 1993; 20: 5–22
  • Puy H., Deybach J.C., Bogdan A., Callebert J., Baumgartner M., Voisin P., Nordmann Y., Touitou Y. Increased δ-aminolevulinic acid and decreased pineal melatonin production. A common event in acute porphyria studies in the rat. Journal of Clinical Investigation 1996; 97: 104–110
  • Tschudy D.P., Hess R.A., Frykholm B.C. Inhibition of δ-aminolevulinic acid dehydratase by 4,6-dioxoheptanoic acid. Journal of Biological Chemistry 1981; 256: 9915–9923
  • Costa C.A., Trivelato G.C., Demasi M., Bechara E.J.H. Determination of 5-aminolevulinic acid in blood plasma, tissues and cell cultures by high-performance liquid chromatography with electrochemical detection. Journal of Chromatography B: Biomedical Science Applications 1997; 695: 245–250
  • Lindroth P., Mopper K. High performance liquid chromatographic determination of subpicomole amounts of amino acids by precolumn fluorescence derivatization with o-phthaldialdehyde. Analytical Chemistry 1979; 51: 1667–1674
  • Dexter D.T., Carayon A., Vidailhet M., Ruberg M., Agid F., Agid Y., Lees A.J., Wells F.R., Jenner P., Marsden C.D. Decreased ferritin levels in brain in Parkinson's disease. Journal of Neurochemistry 1990; 55: 16–20
  • Bralet J., Schreiber L., Bouvier C. Effects of acidosis and anoxia on iron delocalization from brain homogenates. Biochemical Pharmacology 1992; 43: 979–983
  • Levine R.L., Garland D., Oliver C.N., Amici A., Climent I., Lenz A.G., Ahn B.W., Shaltiel S., Stadtman E.R. Determination of carbonyl content in oxidatively modified protein. Methods in Enzymology 1990; 186: 464–502
  • Fraga C.G., Leibovitz B.E., Tappel A.L. Lipid peroxidation measured as thiobarbituric acid-reactive substances in tissue slices: characterization and comparison with homogenates and microsomes. Free Radical Biology and Medicine 1988; 4: 155–161
  • Flohé L., Ötting F. Superoxide dismutase assays. Methods in Enzymology 1984; 105: 93–104
  • Crapo D.J., McCord J.M., Fridovich I. Preparation and assay of superoxide dismutases. Methods in Enzymology 1978; 53: 382–393
  • Lowry O.H., Rosebrough H.J., Farr A.C., Randal R.J. Protein measurement with the folin phenol reagent. Journal of Biological Chemistry 1951; 193: 265–275
  • Adams M.L., Ostapiuk I., Grasso J.A. The effects of inhibition of heme synthesis on the intracellular localization of iron in rat reticulocytes. Biochimica Biophysica Acta 1989; 1012: 243–253
  • Oteiza P.I., Kleinman C.G., Demasi M., Bechara E.J.H. 5-Aminolevulinic acid induces iron release from ferritin. Archives of Biochemistry and Biophysics 1995; 316: 607–611
  • Cairo G., Tacchini L., Pogliagihi G., Anzon E., Tomasi A., Bernelli-Zazzera A. Induction of ferritin synthesis by oxidative stress. Transcriptional and post-transcriptional regulation by expansion of the “free” iron pool. Journal of Biological Chemistry 1995; 270: 700–703
  • Demasi M., Penatti C.A., DeLucia R., Bechara E.J.H. The prooxidant effect of 5-aminolevulinic acid in the brain tissue of rats: implications in neuropsychiatric manifestations in porphyrias. Free Radical Biology and Medicine 1996; 20: 291–299
  • Pereira B., Curi R., Kokubun E., Bechara E.J.H. 5-Aminolevulinic acid-induced alterations of oxidative metabolism in sedentary and exercise-trained rats. Journal of Applied Physiology 1992; 72: 226–230
  • Demasi M., Costa C.A., Pascual C., Llesuy S., Bechara E.J.H. Oxidative tissue response promoted by 5-aminolevulinic acid promptly induces the increase of plasma antioxidant capacity. Free Radical Research 1997; 26: 235–243
  • Onuki J., Medeiros M.H.G., Bechara E.J.H., DiMascio P. 5-Aminolevulinic acid induces single-strand breaks in plasma pBR322 DNA in the presence of Fe2+ ions. Biochimica Biophysica Acta 1994; 1225: 259–263
  • Oteiza P.I., Bechara E.J.H. 5-Aminolevulinic acid induces lipid-peroxidation in cardiolipin-rich liposomes. Archives of Biochemistry and Biophysics 1993; 305: 282–287
  • Vercesi A.E., Castiho R.F., Meinicke A.R., Valle V.G.R., Hermes-Lima M., Bechara E.J.H. Oxidative damage of mitochondria induced by 5-aminolevulinic acid: Role of Ca2+ and membrane protein thiols. Biochimica Biophysica Acta 1994; 1188: 86–92
  • Eisenstein R.S., Garcia-Mayol D., Pettingell W., Munro H.N. Regulation of ferritin and heme oxygenase synthesis in rat fibroblast by different forms of iron. Proceedings of the National Academy of Sciences USA 1991; 88: 688–692
  • Monteiro H.P., Abdalla D.S.P., Augusto O., Bechara E.J.H. Free radical generation during 5-aminolevulinic acid autoxidation: induction by hemoglobin and connections with porphyrinopathies. Archives of Biochemistry and Biophysics 1989; 271: 206–216
  • Hermes-Lima M., Valle V.G.R., Vercesi A.E., Bechara E.J.H. Damage to rat liver mitochondria promoted by δ-aminolevulinic acid-generated reactive oxygen species: connections with acute intermittent porphyria and lead-poisoning. Biochimica Biophysica Acta 1991; 1056: 57–63
  • Hermes-Lima M., Castilho R.F., Valderez G.R., Bechara E.J.H., Vercesi A.E. Calcium-dependent mitochondrial oxidative damage promoted by 5-aminolevulinic acid. Biochimica Biophysica Acta 1992; 1180: 201–206
  • Penatti C.A.A., Bechara E.J.H., Demasi M. δ-Aminolevulinic acid-induced synaptosomal Ca2+ uptake and mitochondrial permeabilization. Archives of Biochemistry and Biophysics 1996; 335: 53–60
  • Hermes-Lima M. How do ca2+ and 5-aminolevulinic acid-derived oxyradicals promote injury to isolated mitochondria?. Free Radical Biology and Medicine 1995; 19: 381–390
  • Biempica L., Kosower N., Ma M.H., Goldfisher S. Cytochemical and ultrastructural studies of liver in acute intermittent porphyria and porphyria cutanea tarda. Arch. Pathol. 1974; 98: 336–343
  • Lithner F., Wetterberg L. Hepatocellular carcinoma in patients with acute intermittent porphyria. Acta Medica Scananavia 1984; 215: 271–274
  • Kauppinen R., Mustajoki P. Acute hepatic porphyria and hepatocellular carcinoma. British Journal of Cancer 1988; 57: 117–120
  • Wyss P.A., Boynton S.B., Chu J., Spencer R.F., Roth K.S. Physiological basis for an animal model of the renal Fanconi syndrome: use of succinylacetone in the rat. Clinical Science 1992; 83: 81–87
  • Wyss P.A., Boynton S., Chu J., Roth K.S. Tissue distribution of succinylacetone in the rat in vivo: a possible basis for neurotoxicity in hereditary infantile tyrosinemia. Biochimica Biophysica Acta 1993; 1182: 323–328
  • Jorquera R., Tanguay R.M. The mutagenicity of the tyrosine metabolite, fumarylacetoacetate, is enhanced by glutathione depletion. Biochemical and Biophysical Research Communications 1997; 232: 42–48
  • Endo F., Kubo S., Awata H., Kiwaki K., Katoh H., Kanegae Y., Saito I., Miyazaki J.-I., Yamamoto T., Jackobs C., Hattori S., Matsuda I. Complete rescue of lethal albino c14CoS mice by null mutation of 4-hydroxyphenylpyruvate dioxygenase and induction of apoptosis of hepatocytes in these mice by in vivo retrieval of the tyrosine catabolic pathway. Journal of Biological Chemistry 1997; 272: 24426–24432
  • Muta K., Krantz S.B. Inhibition of heme synthesis induces apoptosis in human erythroid progenitor cells. Journal of Cellular Physiology 1995; 163: 38–50
  • Carneiro R.C.G., Reiter R.J. Melatonin protects against lipid peroxidation induced by δ-aminolevulinic acid in rat cerrebellum, cortex and hippocampus. Neuroscience 1998; 82: 293–299
  • Ercal N., Treratphan P., Hammond T.C., Mathews R.H., Grannemann N.H., Spitz D.R. In vivo indices if oxidative stress in lead exposed C57BL/6 mice are reduced by treatment with meso-2,3-dimercaptosuccinic acid or N-acetylcysteine. Free Radical Biology and Medicine 1996; 21: 157–161

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.