28
Views
8
CrossRef citations to date
0
Altmetric
Original Article

The role of antioxidants in the long-term glycation of low density lipoprotein and its Cu2+-catalyzed oxidation

&
Pages 439-449 | Received 19 May 1999, Published online: 07 Jul 2009

References

  • Witztum J.L., Steinberg D. Role of oxidized LDL in atherogenesis. Journal of Clinical Investigation 1991; 88: 1785–1792
  • Goldstein J.L., Ho Y.K., Basu S.K., Brown M.S. Binding site on macrophages that mediates uptake and degradation of acetylated low density lipoprotein, producing massive cholesterol deposition. Proceedings of the National Academy of Sciences, USA 1979; 76: 333–337
  • Taniguchi N. Clinical significance of superoxide dismutase changes in aging, diabetes, ischemia, and cancer. Advances in Clinical Chemistry 1992; 29: 1–59
  • Mullarkey C.J., Edelstein D., Brownlee M. Free radical generation by early glycation products: a mechanism for accelerated atherogenesis in diabetes. Biochemical Biophysical Research Communications 1990; 173: 932–939
  • Schleicher E., Deufel T., Wieland O.H. Non-enzymatic glycosylation of human serum lipoproteins. FEBS Letters 1981; 129: 1–4
  • Festa A., Schmölzer B., Schernthaner G., Menzel E.J. Differential expression of receptors for AGEs on monocytes from patients with IDDM. Diabetologia 1998; 41: 674–680
  • Monnier V.M., Kohn R.R., Cerami A. Accelerated age-related browning of human collagen in diabetes mellitus. Proceedings of the National Academy of Sciences, USA 1984; 81: 583–587
  • Vlassara H., Brownlee M., Cerami A. High-affinity receptor-mediated uptake and degradation of glucose-modified proteins: a potential mechanism for the removal of senescent macromolecules. Proceedings of the National Academy of Sciences, USA 1985; 82: 5588–5592
  • Skolnik E.Y., Yang Z., Makita Z., Radoff S., Kirstein M., Vlassara H. Human and rat mesangial cell receptors for glucose-modified proteins: potential role in kidney tissue remodeling and diabetic nephropathy. Journal of Experimental Medicine 1991; 174: 931–939
  • Dominiczak M.H. The significance of the products of the Maillard (browning) reaction in diabetes. Diabetic Medicine 1991; 8: 505–516
  • Sengoelge G., Födinger M., Skoupy S., Ferrara I., Zangerle C., Rogy M., Sunder-Plassmann G., Menzel E.J. Modification of fibronectin by advanced glycation upregulates endothelial cell adhesion molecules and enhances transmigration of polymorphonuclear leukocytes in response to inflammatory stimuli. Kidney International 1998; 54: 1637–1651
  • Dimitriadis E., Griffin M., Owens D., Johnson A., Collins P., Tomkin G.H. Oxidation of low-density lipoprotein in NIDDM: its relationship to fatty acid composition. Diabetologia 1995; 38: 1300–1306
  • Klein R.L., Laimins M., Lopes-Virella M.F. Isolation, characterization, and metabolism of the glycated and nonglycated subfractions of low-density lipoproteins isolated from type I diabetic patients and nondiabetic patients. Diabetes 1995; 44: 1093–1098
  • Bucala R., Makita Z., Vega G., Grundy S., Koschinsky T., Cerami A., Vlassara H. Modification of low density lipoprotein by advanced glycation end products contributes to the dyslipidemia of diabetes and renal insufficiency. Proceedings of the National Academy of Sciences, USA 1994; 91: 9441–9445
  • Esterbauer H., Gebicki J., Puhl H., Jürgens G. The role of lipid peroxidation and antioxidants in oxidative modification of LDL. Free Radical Biology and Medicine 1992; 13: 341–390
  • Jackson R.L., Ku G., Thomas C.E. Antioxidants: a biological defense mechanism for the prevention of atherosclerosis. Medical Research Review 1993; 13: 161–182
  • Li D., Devaraj S., Fuller C., Bucala R., Jialal I. Effect of α-tocopherol on LDL oxidation and glycation: in vitro and in vivo studies. Journal of Lipid Research 1994; 37: 1978–1986
  • Ceriello A., Giugliano D., Quatraro D., Donzella C., Dipalo G., Lefebvre P.J. Vitamin E reduction of protein glycosylation in diabetes: new prospect for prevention of diabetic complications?. Diabetes Care 1991; 14: 68–72
  • Jialal I., Vega G., Grundy S.M. Physiologic levels of ascorbate inhibit the oxidative modification of LDL. Atherosclerosis 1990; 82: 185–191
  • Jialal I., Grundy S.M. Preservation of endogenous antioxidants in LDL by ascorbate but not probucol during oxidative modification. Journal of Clinical Investigation 1991; 87: 597–601
  • Davie S.J., Gould B.J., Yudkin J.S. Effect of vitamin C on glycosylation of proteins. Diabetes 1992; 41: 167–173
  • Brownlee M., Vlassara H., Kooney A., Ulrich P., Cerami A. Aminoguanidine prevents diabetes-induced arterial wall protein cross-linking. Science 1986; 232: 1629–1632
  • Reihsner R., Menzel E.J. Two-dimensional stress-relaxation behavior of human skin as influenced by non-enzymatic glycation and the inhibitory agent aminoguanidine. Journal of Biomechanics 1998; 31: 985–993
  • Picard S., Parthasarathy S., Fruebis J., Witztum J. Aminoguanidine inhibits oxidative modification of LDL and the subsequent increase in uptake by macrophage scavenger receptors. Proceedings of the National Academy of Sciences, USA 1992; 89: 6876–6880
  • Scaccini C., Chiesa G., Jialal I. A critical assessment of the effects of aminoguanidine and ascorbate on the oxidative modification of LDL: evidence for interference with some assays of lipoprotein oxidation by aminoguanidine. Journal of Lipid Research 1994; 35: 1085–1092
  • Buege J.A., Aust S.D. Microsomal lipid peroxidation. Methods in Enzymology 1978; 52: 302–312
  • Bucala R., Makita Z., Koschinsky T., Cerami A., Vlassara H. Lipid advanced glycosylation: pathway for lipid oxidation in vivo. Proceedings of the National Academy of Sciences, USA 1993; 90: 6434–6438
  • Kobayashi K., Watanabe J., Umeda F., Nawata H. Glycation accelerates the oxidation of low density lipoprotein by copper ions. Endocrine Journal 1995; 42: 461–465
  • Sakurai T., Kimura S., Nakano M., Kimura H. Oxidative modification of glycated low density lipoprotein in the presence of iron. Biochemical Biophysical Research Communications 1991; 177: 433–439
  • Babiy A.V., Gebicki J.M., Sullivan D.R., Willey K. Increased oxidizability of plasma lipoproteins in diabetic patients can be decreased by probucol therapy and is not due to glycation. Biochemical Pharmacology 1992; 43: 995–1000
  • Bowie A., Owens D., Collins P., Johnson A., Tomkin G.H. Glycosylated low density lipoprotein is more sensitive to oxidation: implications for the diabetic patient?. Atherosclerosis 1993; 102: 63–67
  • Tsai E.C., Hirsch I.B., Brunzell J.D., Chait A. Reduced plasma peroxyl radical trapping capacity and increased susceptibility of LDL to oxidation in poorly controlled IDDM. Diabetes 1994; 43: 1010–1014
  • Abuja P.M., Albertini R., Esterbauer H. Simulation of the induction of oxidation of low-density lipoprotein by high copper concentrations: evidence for a nonconstant rate of initiation. Chemical Research in Toxicology 1997; 10: 644–651
  • Zyzak D.V., Richardson J.M., Thorpe S.R., Baynes J.W. Formation of reactive intermediates from Amadori compounds under physiological conditions. Archives of Biochemistry and Biophysics 1995; 316: 547–554
  • Wolff P., Dean R.T. Glucose autoxidation and protein modification. Biochemical Journal 1987; 245: 243–250
  • Fu M., Wells-Knecht K.J., Blackledge J.A., Lyons T.J., Thorpe S., Baynes J.W. Glycation, glycoxidation, and cross-linking of collagen by glucose. Diabetes 1994; 43: 676–683
  • Pinckard R.N., Hawkins D., Farr R.S. In vitro acetylation of plasma proteins, enzymes and DNA by aspirin. Nature 1968; 219: 68–71
  • Li W., Khatami M., Robertson G.A., Shen S., Rockey J.H. Nonenzymatic glycation of bovine retinal microvessel basement membranes in vitro. Kinetic analysis and inhibition by aspirin. Investigative Ophthalmology and Visual Sciences 1984; 25: 884–892
  • Ziouzenkova O., Gieseg S.P., Ramos P., Esterbauer H. Factors affecting resistance of low density lipoproteins to oxidation. Lipids 1996; 31: 71–76
  • Jessup W., Rankin S.M., De Whalley C.V., Hoult J.R.S., Scott J., Leake O.S. Alpha-tocopherol consumption during low-density-lipoprotein oxidation. Biochemical Journal 1990; 265: 399–405
  • Fu S., Fu M.X., Baynes J.W., Thorpe S.R., Dean R.T. Presence of dopa and amino acid hydroperoxides in proteins modified with advanced glycation end products (AGEs): amino acid oxidation products as a possible source of oxidative stress induced by AGE proteins. Biochemical Journal 1998; 330: 233–239
  • Contreras I., Reiser K.M., Martinez N., Giansante E., Lopez T., Suarez N., Postalian S., Molina M., Gonzalez F., Sanchez M.R., Camejo M., Blanco M.C. Effects of aspirin or basic amino acids on collagen cross-links and complications in NIDDM. Diabetes Care 1997; 20: 832–835
  • Inoue I., Katayama S., Takahashi K., Negishi K., Miyazaki T., Sonoda M., Komoda T. Troglitazone has a scavenging effect on reactive oxygen species. Biochemical and Biophysical Research Communications 1997; 235: 113–116
  • Watanabe H. ESR studies on the antioxidant activity of troglitazone. Chemical and Pharmaceutical Bulletin 1997; 45: 1851–1855
  • Noguchi N., Sakai H., Kato Y., Tsuchiya J., Yamamoto Y., Niki E., Horikoshi H., Kodama T. Inhibition of oxidation of low density lipoprotein by troglitazone. Atherosclerosis 1996; 123: 227–234

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.