151
Views
28
CrossRef citations to date
0
Altmetric
Original

4-HPR-mediated leukemia cell cytotoxicity is triggered by ceramide-induced mitochondrial oxidative stress and is regulated downstream by Bcl-2

, , , , , , & show all
Pages 591-601 | Received 19 Sep 2006, Published online: 07 Jul 2009

References

  • Fontana A, Rishi AK. Classical and novel retinoids: Their targets in cancer therapy. Leukemia 2002; 16: 463–472
  • Maurer BJ, Metelitsa LS, Seeger RC, Cabot MC, Reynolds CP. Increase of ceramide and induction of mixed apoptosis/necrosis by N-(4-hydroxyphenyl)-retinamide in neuroblastoma cell lines. J Natl Cancer Inst 1999; 91: 1138–1146
  • Sun SY, Li W, Yue P, Lippman SM, Hong WK, Lotan R. Mediation of N-(4-hydroxyphenyl)retinamide-induced apoptosis in human cancer cells by different mechanisms. Cancer Res 1999; 59: 2493–2498
  • Tosetti F, Vene R, Arena G, Morini M, Minghelli S, Noonan DM, Albin A. N-(4-hydroxyphenyl)retinamide inhibits retinoblastoma growth through oxygen species-mediated cell death. Mol Pharmacol 2003; 63: 565–573
  • Darwiche N, Hatoum A, Dbaibo G, Kadara H, Nars R, AbouLteif G, Bazzi R, Hermine O, de The H, Bazarbachi A. N-(4-hydroxyphenyl)retinamide induces growth arrest and apoptosis in transformed cell. Leukemia 2004; 18: 607–615
  • Rehman F, Shanmugasundaram P, Schrey MP. Fenretinide stimulates redox-sensitive ceramide production in breast cancer cells: Potential role in drug-induced cytotoxicity. Br J Cancer 2004; 91: 1821–1828
  • Asumendi A, Morales MC, Alvarez A, Aréchaga J, Pérez-Yarza G. Implication of mitochondria-derived ROS and cardiolipin peroxidation in N-(4-hydroxyphenyl)retinamide-induced apoptosis. Br J Cancer 2002; 86: 1951–1956
  • Suzuki S, Higuchi M, Proske RJ, Oridate N, Hong WK, Lotan R. Implication of mitochondrial-derived reactive oxygen species, cytochrome c and caspase-3 in N-(4-hydroxyphenyl)retinamide-induced apoptosis in cervical carcinoma cells. Oncogene 1999; 18: 1951–1956
  • Lovat PE, Di Sano F, Corazzari M, Fazi B, Donnorso RP, Pearson ADJ, Hall AG, Redfern CPF, Piacentini M. Gangliosides link the acidic sphingomyelinase-mediated induction of ceramide to 12-lipoxygenase-dependent apoptosis of neuroblastoma in response to fenretinide. J Natl Cancer Inst 2004; 96: 1288–1299
  • Kroemer G, Reed JC. Mitochondrial control of cell death. Nat Med 2000; 6: 513–519
  • Breckenridge D, Xue D. Regulation of mitochondrial membrane permeabilization by BCL-2 family proteins and caspases. Curr Opin Cell Biol 2004; 16: 647–652
  • Korsmeyer SJ, Wei MC, Saito M, Weiler S, Oh KJ, Schelesinger PH. Proapoptotic cascade activates BID, which oligomerizes BAK or BAX into pores that result in the release of cytochrome c. Cell Death Differ 2000; 7: 1166–1173
  • Letai A, Bassik MC, Walensky LD, Sorcinelli MD, Weiler S, Korsmeyer SJ. Distinct BH3 domains either sensitize or activate mitochondrial apoptosis, serving as prototype cancer therapeutics. Cancer Cell 2002; 2: 183–192
  • Suzuki M, Youle RJ, Tjandra N. Structure of Bax: Coregulation of dimer formation and intracellular localization. Cell 2000; 103: 645–654
  • Andrieu-Abadie N, Gouazé V, Salvayre R, Levade T. Ceramide in apoptosis signaling: Relatioship with oxidative stress. Free Radic Biol Med 2001; 31: 717–728
  • Modrak DE, Gold DV, Goldenberg DM. Sphingolipid targets in cancer therapy. Mol Cancer Ther 2006; 5: 200–2008
  • Maurer BJ, Melton L, Billups C, Cabot MC, Reynolds CP. Synergistic cytotoxicity in solid tumor cell lines between N-(4-hidroxyphenyl)retinamide and modulators of ceramide metabolism. J Natl Cancer Inst 2000; 92: 1897–1909
  • Batra S, Reynolds P, Maurer BJ. Fenretinide cytotoxicity for Ewing's sarcoma and primitive neuroectodermal tumor cell lines is decreased by hypoxia and synergistically enhanced by ceramide modulators. Cancer Res 2004; 64: 5415–5424
  • Litvak DA, Bilchik AJ, Cabot MC. Modulators of ceramide metabolism sensitize colorectal cancer cells to chemotherapy: A novel treatment strategy. J Gastrointest Surg 2003; 7: 140–148
  • Mansat-de Mas V, Bezombes C, Quillet-Mary A, Bettaieb A, D'Orgeix AD, Laurent G, Jeffrezou JP. Implication of radical oxygen species in ceramide generation, c-Jun N-terminal kinase activation and apoptosis induced by daunorubicin. Mol Pharmacol 1999; 56: 867–874
  • Cabrero A, Algret M, Sanchez RM, Adzet T, Laguna JC, Carrera MV. Increased reactive oxygen species production down-regulates peroxisome proliferator-activated alpha pathway in C2C12 skeletal muscle cells. J Biol Chem 2002; 277: 10100–10107
  • Kannan R, Jin M, Gamulescu MA, Hinton DR. Ceramide-induced apoptosis: Role of catalase and epatocyte growth factor. Free Radic Biol Med 2004; 37: 166–175
  • Goldkorn T, Ravid T, Khan EM. Life and death decisions: Ceramide generation and EGF receptor trafficking are modulated by oxidative stress. Antioxid Redox Signal 2005; 7: 119–128
  • Lavrentiadou SN, Chen C, Kawcak T, Ravid T, Tsaba A, van der Vliet A, Rasooly R, Goldkorn T. Ceramide-mediated apoptosis in lung epithelial cells is regulated by glutathione. Am J Respir Cell Mol Biol 2001; 25: 676–684
  • Hartman BL, Geley S, Koffler M, Hattmannstorfer R, Strausser-Wozak EM, Auer B, Kofler R. Bcl-2 interferes with the execution phase, but not upstream events, in glucocorticoid-induced leukemia apoptosis. Oncogene 1999; 18: 713–719
  • Triola G, Fabriàs G, Llebaria A. Synthesis of a cyclopropene analogue of ceramide, a potent inhibitor of dihydroceramide desaturase. Angew Chem Int Ed Engl 2001; 40: 1960–1962
  • Bligh EA, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem Physiol 1959; 37: 911–917
  • Jayadev S, Linardic CM, Hannun YA. Identification of arachidonic acid as a mediator of sphingomyelin hydrolysis in response to tumor necrosis factor alpha. J Biol Chem 1994; 269: 5757–5763
  • Boya P, Morales MC, Gonzalez-Polo RA, Andreau K, Goudier I, Perfettini JL, Larochette N, Deniaud A, Baran-Marszak F, Fagard R, Feuillard J, Asumendi A, Raphael M, Pau B, Brenner C, Kroemer G. The chemopreventive agent N-(4-hydroxyphenyl)retinamide induces apoptosis through a mitochondrial pahtway regulated by proteins from the Bcl-2 family. Oncogene 2003; 22: 6220–6230
  • Lovat PE, Oliverio S, Corazzari M, Rodolfo C, Ranalli M, Goranov B, Melino G, Redfern CPF, Piancentini M. Bak: A downstream mediator of fenretinide-induced apoptosis of SH-SY5Y neuroblastoma cells. Cancer Res 2003; 63: 7310–7313
  • Morales MC, Pérez-Yarza G, Nieto-Rementería N, Boyano MD, Muhialdin J, Atencia R, Asumendi A. Intracellular glutathione levels determine cell sensitivity to apoptosis induced by the antineoplasic agent N-(4-hydroxyphenyl)retinamide. Anticancer Res 2005; 25: 1945–1952
  • Ruffolo SC, Breckenridge DG, Nguyen M, Goping IS, Gross A, Korsmeyer SJ, Li H, Yuan J, Shore GC. BID-dependent and BID-independent pathways for BAX insertion into mitochondria. Cell Death Differ 2000; 7: 1101–1108
  • Kuwana T, Mackey MR, Perkins G, Ellisman MH, Latterich M, Schneiter R, Green DR, Newmeyer DD. Bid, bax, and lipids cooperate to form supramolecular openings in the outer mitochondrial membrane. Cell 2002; 111: 331–342
  • Ahmad KA, Iskandar KB, Hirpara JL, Clement MV, Pervaiz S. Hydrogen peroxide-mediated cytosolic acidification is a signal for mitochondrial translocation of bax during drug-induced apoptosis of tumor cells. Cancer Res 2004; 64: 7867–7878
  • Ott M, Robertson JD, Gogvadze V, Zhivotovsky B, Orrenius S. Cytochrome c release from mitochondria proceeds by a two-step process. Proc Natl Acad Sci USA 2002; 99: 1259–1263
  • Nakagawa Y. Initiation of apoptotic signal by the peroxidation of cardiolipin of mitochondria. Ann NY Acad Sci 2004; 1011: 177–184
  • Nomura K, Imai T, Nakagawa Y. Mitochondrial phospholipid hydroperoxide glutathione inhibits the release of cytochome c from mitochondria by suppressing the peroxidation of cardiolipin in hypoglycaemia-induced apoptosis. Biochem J 2000; 351: 183–193
  • Reynolds CP, Maurer BJ, Kolesnick RN. Ceramide synthesis and metabolism as a target for cancer therapy. Cancer Lett 2004; 206: 169–180
  • Marchetti P, Zamzami N, Josph B, Schraen-Maschke S, Mereau-Richard C, Costantini P, Metivier D, Susin SA, Kroemer G, Formstecher P. The novel retinoid 6-[3-(1-adamantyl)-4-hydroxyphenyl]-2-naphtalene carboxylic acid can trigger apoptosis through a mitochondrial pathway independent of the nucleus. Cancer Res 1999; 54: 6257–6275
  • Notario B, Zamora M, Vinas O, Mampel T. All-trans-retinoic acid binds to and inhibits adenine nucleotide translocase and induces mitochondrial permeability transition. Mol Pharmacol 2003; 63: 224–231
  • Siskind LJ. Mitochondrial ceramide and the induction of apoptosis. J Bioenerg Biomembr 2005; 37: 143–153
  • García-Ruiz C, Colell A, Mari M, Morales A, Fernandez-Checa JC. Direct effect of ceramide on the mitochondrial electron transport chain leads to generation of reactive oxygen species. Role of mitochondrial glutathione. J Biol Chem 1997; 272: 11369–11377
  • Quillet-Mary A, Jaffrézou JP, Mansat V, Bordier C, Naval J, Laurent G. Implication of mitochondrial hydrogen peroxide generation in ceramide-induced apoptosis. J Biol Chem 1997; 272: 21388–21395
  • Di Paola M, Cocco T, Lorusso M. Ceramide interaction with the respiratory chain of heart mitochondria. Biochemistry 2000; 39: 6660–6668
  • Therade-Mathara S, Laemmel E, Carpentier S, Obata Y, Levade T, Duranteau J, Vicaut E. Reactive oxygen species production by mitchondria in endothelial cells exposed to reoxygenation after hypoxia and glucose depletion is mediated by ceramide. Am J Physiol Regul Integr Comp Physiol 2005; 289: 1756–1762
  • Ghafourifar P, Klein SD, Schucht O, Schenk U, Pruschy M, Rocha S, Richtere C. Ceramide induces cytochrome c release from isolated mitochondria. Importance of mitochondrial redox state. J Biol Chem 1999; 274: 6080–6084
  • Di Paola M, Zaccagnino P, Montedoro G, Cocco T, Lorusso M. Ceramide induces release of pro-apoptotic proteins from mitochondria by either a Ca2+-dependent or a Ca2+-independent mechanism. J Bioenerg Biomembr 2004; 36: 165–170
  • Schulze-Osthoff L, Bakker AC, Vanhaesebroeck B, Beyaert R, Jacob WA, Fiers W. Cytotoxic activity of tumor necrosis factor is mediated by early damage of mithochondrial functions. Evidence for the involvement of mitochondrial radical generation. J Biol Chem 1992; 267: 5317–5323
  • Nicolay K, de Kruijff B. Effects of adriamycin on respiratory chain activities in mitochondria from rat liver, rat heart, and bovine heart. Evidence for a preferential inhibition of complex III and IV. Biochim Biophys Acta 1987; 892: 320–330
  • Tuquet C, Dupont J, Mesneau A, Roussaux J. Effects of tamoxifen on the electron transport chain of isolated rat liver mitochondria. Cell Biol Toxicol 2000; 16: 207–219
  • Chen JSK, Agarwal N, Mehta K. Multigrug-resistant MCF-7 breast cancer cells contain deficient intracellular calcium pools. Breast Cancer Res Treat 2002; 71: 237–347
  • Macho A, Hirsch T, Marzo I, Marchetti P, Dallaporta B, Susin SA, Zamzami N, Kroemer G. Glutathione depletion is an early and calcium elevation is a late event of thymocyte apoptosis. J Immunol 1997; 158: 4612–4619
  • Degterev A, Boyce M, Yuan J. The channel of death. J Cell Biol 2001; 155: 695–698
  • Cheng EH, Wei MC, Weiler S, Flavell RA, Mak TW, Lindsten T, Kornsmeyer SJ. BCL-2 BCL-X(L) sequester BH3 domain-only molecules preventing BAX- and BAK-mediated mitochondrial apoptosis. Mol Cell 2001; 8: 705–711

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.