134
Views
20
CrossRef citations to date
0
Altmetric
Original

Inhibitory effects of glycitein on hydrogen peroxide induced cell damage by scavenging reactive oxygen species and inhibiting c-Jun N-terminal kinase

, , , , , , , , & show all
Pages 720-729 | Received 06 Sep 2006, Published online: 07 Jul 2009

References

  • Park HJ, Park JH, Moon JO, Lee KJ, Jung WT, Lee HK, Oh SR. Isoflavone glycosides from the flowers of Pueraria thunbergiana. Phytochemistry 1999; 51: 147–151
  • Akao T, Kobashi K, Aburada M. Enzymic studies on the animal and intestinal bacterial metabolism of geniposide. Biol Pharm Bull 1994; 17: 1573–1576
  • Kim DH, Yu KW, Bae EA, Park HJ, Choi JW. Metabolism of kalopanaxsaponin B and H by human intestinal bacteria and antidiabetic activity of their metabolites. Biol Pharm Bull 1998; 21: 360–365
  • Rufer CE, Kulling SE. Antioxidant activity of isoflavones and their major metabolites using different in vitro assays. J Agric Food Chem 2006; 54: 2926–2931
  • Chang YC, Nair MG. Metabolism of daidzein and genistein by intestinal bacteria. J Nat Prod 1995; 58: 1892–1896
  • Joannou GE, Kelly GE, Reeder AY, Waring M, Nelson C. A urinary profile study of dietary phytoestrogens. The identification and mode of metabolism of new isoflavonoids. J Steroid Biochem Mol Biol 1995; 54: 167–184
  • Heinonen SM, Hoikkala A, Wahala K, Adlercreutz H. Metabolism of the soy isoflavones daidzein, genistein and glycitein in human subjects. Identification of new metabolites having an intact isoflavonoid skeleton. J Steroid Biochem Mol Biol 2003; 87: 285–299
  • Kulling SE, Honig DM, Simat TJ, Metzler M. Oxidative in vitro metabolism of the soy phytoestrogens daidzein and genistein. J Agric Food Chem 2000; 48: 4963–4972
  • Kulling SE, Honig DM, Metzler M. Oxidative metabolism of the soy isoflavones daidzein and genistein in humans in vitro and in vivo. J Agric Food Chem 2001; 49: 3024–3033
  • Song TT, Hendrich S, Murphy PA. Estrogenic activity of glycitein, a soy isoflavone. J Agric Food Chem 2002; 50: 2470–2474
  • Carroll KK. Review of clinical studies on cholesterol-lowering response to soy protein. J Am Diet Assoc 1991; 91: 820–827
  • Anthony MS, Clarkson TB, Williams JK. Effects of soy isoflavones on atherosclerosis: Potential mechanisms. Am J Clin Nutr 1998; 68: 1390S–1393S
  • Sung JH, Lee SJ, Park KH, Moon TW. Isoflavones inhibit 3-hydroxy-3-methylglutaryl coenzyme A reductase in vitro. Biosci Biotechnol Biochem 2004; 68: 428–432
  • Kim MH, Gutierrez AM, Goldfarb RH. Different mechanisms of soy isoflavones in cell cycle regulation and inhibition of invasion. Anticancer Res 2002; 22: 3811–3817
  • Magee PJ, McGlynn H, Rowland IR. Differential effects of isoflavones and lignans on invasiveness of MDA-MB-231 breast cancer cells in vitro. Cancer Lett 2004; 208: 35–41
  • Pan W, Ikeda K, Takebe M, Yamori Y. Genistein, daidzein and glycitein inhibit growth and DNA synthesis of aortic smooth muscle cells from stroke-prone spontaneously hypertensive rats. J Nutr 2001; 131: 1154–1158
  • Gutierrez-Zepeda A, Santell R, Wu Z, Brown M, Wu Y, Khan I, Link CD, Zhao B, Luo Y. Soy isoflavone glycitein protects against beta amyloid-induced toxicity and oxidative stress in transgenic Caenorhabditis elegans. BMC Neurosci 2005; 6: 54–62
  • Yamaki K, Kim DH, Ryu N, Kim YP, Shin KH, Ohuchi K. Effects of naturally occurring isoflavones on prostaglandin E2 production. Planta Med 2002; 68: 97–100
  • Sheu F, Lai HH, Yen GC. Suppression effect of soy isoflavones on nitric oxide production in Raw 264.7 macrophages. J Agric Food Chem 2001; 49: 1767–1772
  • Yoshida H, Teramoto T, Ikeda K, Yamori Y. Glycitein effect on suppressing the proliferation and stimulating the differentiation of osteoblastic MC3T3-E1 cells. Biosci Biotechnol Biochem 2001; 65: 1211–1213
  • Cooke MS, Mistry N, Wood C, Herbert KE, Lunec J. Immunogenicity of DNA damaged by reactive oxygen species implications for anti-DNA antibodies in lupus. Free Radic Biol Med 1997; 22: 151–159
  • Darley-Usmar V, Halliwell B. Blood radicals: Reactive nitrogen species, reactive oxygen species, transition metal ions, and the vascular system. Pharm Res 1996; 13: 649–662
  • Farinati F, Cardin R, Degan P, Rugge M, Mario FD, Bonvicini P, Naccarato R. Oxidative DNA damage accumulation in gastric carcinogenesis. Gut 1998; 42: 351–356
  • Laurindo FR, da Luz PL, Uint L, Rocha TF, Jaeger RG, Lopes EA. Evidence for superoxide radical-dependent coronary vasospasm after angioplasty in intact dogs. Circulation 1991; 83: 1705–1715
  • Nakazono K, Watanabe N, Matsuno K, Sasaki J, Sato T, Inoue M. Does superoxide underlie the pathogenesis of hypertension. Proc Natl Acad Sci USA 1991; 88: 10045–10048
  • Palinski W, Miller E, Witztum JL. Immunization of low density lipoprotein (LDL) receptor-deficient rabbits with homologous malondialdehyde-modified LDL reduces atherogenesis. Proc Natl Acad Sci USA 1995; 92: 821–825
  • Parthasarathy S, Steinberg D, Witztum JL. The role of oxidized low-density lipoproteins in the pathogenesis of atherosclerosis. Annu Rev Med 1992; 43: 219–225
  • Fei J, Viedt C, Soto U, Elsing C, Jahn L, Kreuzer J. Endothelin-1 and smooth muscle cells: Induction of jun amino-terminal kinase through an oxygen radical-sensitive mechanism. Arterioscler Thromb Vasc Biol 2000; 20: 1244–1249
  • Lo YY, Wong JM, Cruz TF. Reactive oxygen species mediate cytokine activation of c-Jun NH2-terminal kinases. J Biol Chem 1996; 271: 15703–15707
  • Mansat-de Mas V, Bezombes C, Quillet-Mary A, Bettaieb A, D'orgeix AD, Laurent G, Jaffrezou JP. Implication of radical oxygen species in ceramide generation, c-Jun N-terminal kinase activation and apoptosis induced by daunorubicin. Mol Pharmacol 1999; 56: 867–874
  • Kyriakis JM, Avruch J. Sounding the alarm: Protein kinase cascades activated by stress and inflammation. J Biol Chem 1996; 271: 24313–24316
  • Liu ZG, Hsu H, Goeddel DV, Karin M. Dissection of TNF receptor 1 effector functions: JNK activation is not linked to apoptosis while NF-kappaB activation prevents cell death. Cell 1996; 87: 565–576
  • Lee HW, Choo MK, Bae EA, Kim DH. Beta-glucuronidase inhibitor tectorigenin isolated from the flower of Pueraria thunbergiana protects carbon tetrachloride-induced liver injury. Liver Int 2003; 23: 221–226
  • Rosenkranz AR, Schmaldienst S, Stuhlmeier KM, Chen W, Knapp W, Zlabinger GJ. A microplate assay for the detection of oxidative products using 2′,7′-dichlorofluorescein-diacetate. J Immunol Meth 1992; 156: 39–45
  • Lo SF, Nalawade SM, Mulabagal V, Matthew S, Chen CL, Kuo CL, Tsay HS. In vitro propagation by asymbiotic seed germination and 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity studies of tissue culture raised plants of three medicinally important species of dendrobium. Biol Pharm Bull 2004; 27: 731–735
  • Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 1979; 95: 351–358
  • Singh NP. Microgels for estimation of DNA strand breaks, DNA protein cross links and apoptosis. Mutat Res 2000; 455: 111–127
  • Rajagopalan R, Ranjan SK, Nair CK. Effect of vinblastine sulfate on gamma-radiation-induced DNA single-strand breaks in murine tissues. Mutat Res 2003; 536: 15–25
  • Carmichael J, DeGraff WG, Gazdar AF, Minna JD, Mitchell JB. Evaluation of a tetrazolium-based semiautomated colorimetric assay: Assessment of chemosensitivity testing. Cancer Res 1987; 47: 936–941
  • Nicoletti I, Migliorati G, Pagliacci MC, Grignani F, Riccardi C. A rapid and simple method for measuring thymocyte apoptosis by propidium iodide staining and flow cytometry. J Immunol Methods 1991; 139: 271–279
  • Rogakou EP, Pilch DR, Orr AH, Ivanova VS, Bonner WM. DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J Biol Chem 1988; 273: 5858–5868
  • Karin M, Liu Z, Zandi E. AP-1 function and regulation. Curr Opin Cell Biol 1997; 9: 240–246
  • Kitamura M, Ishikawa Y, Moreno-Manzano V, Xu Q, Konta T, Lucio-Cazana J, Furusu A, Nakayama K. Intervention by retinoic acid in oxidative stress-induced apoptosis. Nephrol Dial Transplant 2002; 17: 84–87
  • Li L, Wang HK, Chang JJ, McPhail AT, McPhail DR, Terada H, Konoshima T, Kokumai M, Kozuka M, Estes JR. Rotenoids and isoflavones as cytotoxic constitutents from Amorpha fruticosa. J Nat Prod 1993; 56: 690–698
  • Bae EA, Han MJ, Lee KT, Choi JW, Park HJ, Kim DH. Metabolism of 6″-O-xylosyltectoridin and tectoridin by human intestinal bacteria and their hypoglycemic and in vitro cytotoxic activities. Biol Pharm Bull 1999; 22: 1314–1318
  • Valachovicova T, Slivova V, Bergman H, Shuherk J, Sliva D. Soy isoflavones suppress invasiveness of breast cancer cells by the inhibition of NF-kappaB/AP-1-dependent and -independent pathways. Int J Oncol 2004; 25: 1389–1395
  • Park EK, Shin YW, Lee HU, Lee CS, Kim DH. Passive cutaneous anaphylaxis-inhibitory action of tectorigenin, a metabolite of tectoridin by intestinal microflora. Biol Pharm Bull 2004; 27: 1099–1102
  • Kang KA, Lee KH, Chae S, Zhang R, Jung MS, Kim SY, Kim HS, Kim DH, Hyun JW. Cytoprotective effect of tectorigenin, a metabolite formed by transformation of tectoridin by intestinal microflora, on oxidative stress induced by hydrogen peroxide. Eur J Pharmacol 2005; 519: 16–23
  • Kitamura M, Ishikawa Y, Moreno-Manzano V, Xu Q, Konta T, Lucio-Cazana J, Furusu K, Nakayama. Intervention by retinoic acid in oxidative stress-induced apoptosis. Nephrol Dial Transplant 2002; 17: 84–87

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.