1,155
Views
14
CrossRef citations to date
0
Altmetric
Original Article

Radiation chemical studies of Gly-Met-Gly in aqueous solution

, , , , , & show all
Pages S24-S39 | Received 07 Jul 2016, Accepted 28 Aug 2016, Published online: 25 Oct 2016

References

  • Poole LB, Karplus PA, Claiborne A. Protein sulfenic acids in redox signaling. Annu Rev Pharmacol Toxicol 2004;44:325–347.
  • Weissbach H, Resnick L, Brot N. Methionine sulfoxide reductases: history and cellular role in protecting against oxidative damage. Biochim Biophys Acta 2005;1703:203–212.
  • Lu S, Levine RL. Methionine in proteins defends against oxidative stress. FASEB J 2009;23:464–472.
  • Stadtman ER, Van Remmen H, Richardson A, Wehr NB, Levine RL. Methionine oxidation and aging. Biochim Biophys Acta 2005;1703:135–140.
  • Davies MJ. The oxidative environment and protein damage. Biochim Biophys Acta 2005;1703:93–109.
  • Davies MJ, Fu S, Wang H, Dean RT. Stable markers of oxidant damage to proteins and their application in the study of human disease. Free Radic Biol Med 1999;27:1151–1163.
  • Jensen JL, Miller BL, Zhang X, Hug GL, Schoneich C. Oxidation of threonylmethionine by peroxynitrite. Quantification of the one-electron transfer pathway by comparison to one-electron photooxidation. J Am Chem Soc 1997;119:4749–4757.
  • Schoneich C. Methionine oxidation by reactive oxygen species: reaction mechanisms and relevance to Alzheimer’s disease. Biochim Biophys Acta 2005;1703:111–119.
  • Barata-Vallejo S, Ferreri C, Postigo A, Chatgilialoglu C. Radiation chemical studies of methionine in aqueous solution: understanding the role of molecular oxygen. Chem Res Toxicol 2010;23:258–263.
  • Hiller K-O, Masloch B, Göbl M, Asmus K-D. Mechanism of the OH• radical induced oxidation of methionine in aqueous solution. J Am Chem Soc 1981;103:2734–2743.
  • Hiller K-O, Asmus K-D. Formation and reduction reactions of α-amino radicals derived from methionine and its derivatives in aqueous solutions. J Phys Chem 1983;87:3682–3688.
  • Glass RS, Hug GL, Schöneich C, Wilson GS, Kuznetsova L, Lee T, et al. Neighboring amide participation in thioether oxidation: relevance to biological oxidation. J Am Chem Soc 2009;131:13791–13805.
  • Bobrowski K, Holcman J. Formation and stability of intramolecular three-electron S∴N, S∴S and S∴O bonds in one-electron-oxidized simple methionine peptides. Pulse radiolysis study. J Phys Chem 1989;93:6381–6387.
  • Schöneich C, Pogocki D, Wisniowski P, Hug GL, Bobrowski K. Intramolecular sulfur-oxygen bond formation in radical cations of N-acetylmethionine amide. J Am Chem Soc 2000;122:10224–10225.
  • Schöneich C, Pogocki D, Hug GL, Bobrowski K. Free radical reactions of methionine in peptides: mechanisms relevant to beta-amyloid oxidation and Alzheimer's disease. J Am Chem Soc 2003;125:13700–13713.
  • Bobrowski K, Hug GL, Pogocki D, Marciniak B, Schöneich C. Stabilization of sulfide radical cations through complexation with the peptide bond: mechanisms relevant to oxidation of proteins containing multiple methionine residues. J Phys Chem B 2007;111:9608–9620.
  • Ohara A. On the radiolysis of methionine in aqueous solution by gamma irradiation. J Radiat Res 1966;7:18–27.
  • Xu G, Chance MR. Radiolytic modification of sulfur containing amino acid residues in model peptides: fundamental studies for protein footprinting. Anal Chem 2005;77:2437–2449.
  • Ignasiak M, Scuderi D, de Oliveira P, Pedzinski T, Rayah Y, Houée Levin C. Characterization by mass spectrometry and IRMPD spectroscopy of the sulfoxide group in oxidized methionine and related compounds. Chem Phys Lett 2011;502:29–36.
  • Ignasiak M, de Oliveira P, Houée Levin C, Scuderi D. Oxidation of methionine-containing peptides by OH radicals: is sulfoxide the only product? Study by mass spectrometry and IRMPD spectroscopy. Chem Phys Lett 2013;590:35–40.
  • Miller BL, Kuczera K, Schöneich C. One-electron photooxidation of N-methionyl peptides. Mechanism of sulfoxide and azasulfonium diastereomer formation through reaction of sulfide radical cation complexes with oxygen or superoxide. J Am Chem Soc 1998;120:3345–3356.
  • Bonifacic M, Hug GL, Schöneich C. Kinetic of the reactions between sulfide radical cation complexes [S∴S]+ and [S∴N]+, and superoxide or carbon dioxide radical anions. J Phys Chem A 2000;104:1240–1245.
  • Chatgilialoglu C, Ferreri C, Torreggiani A, Renzone G, Salzano AM, Scaloni A. Radiation-induced reductive modifications of sulfur-containing amino acids within peptides and proteins. J Proteomics 2011;74:2263–2273.
  • Chatgilialoglu C, Ferreri C, Masi A, Melchiore M, Sansone A, Terzidis MA, Torreggiani A. Biomimetic models of radical stress and related biomarkers. Chimia 2012;66:368–371.
  • Mozziconacci O, Bobrowski K, Ferreri C, Chatgilialoglu C. Reactions of hydrogen atoms with met-enkephalin and related peptides. Chemistry 2007;13:2029–2033.
  • Kadlcik V, Sicard-Roselli C, Houée-Levin C, Kodicek M, Ferreri C, Chatgilialoglu, C. Reductive modification of a methionine residue in the amyloid-beta peptide. Angew Chem Int Ed Engl 2006;45:2595–2598.
  • Ferreri C, Manco I, Faraone-Mennella MR, Torreggiani A, Tamba M, Manara S, Chatgilialoglu C. The reaction of hydrogen atoms with methionine residues: a model of reductive radical stress causing tandem protein-lipid damage. ChemBioChem 2006;7:1738–1744.
  • Ferreri C, Chatgilialoglu C, Torreggiani A, Salzano AM. Renzone G, Scaloni A. The reductive desulfurization of Met and Cys residues in bovine RNAse A associated with the trans lipid formation in a mimetic model of biological membranes. J Proteome Res 2008;7:2007–2015.
  • Salzano AM, Renzone G, Scaloni A, Torreggiani A, Ferreri C, Chatgilialoglu C. Human serum albumin modifications associated with reductive radical stress. Mol BioSyst 2011;7:889–898.
  • Torreggiani A, Domènech J, Ferreri C, Orihuela R, Atrian S, Capdevila M, Chatgilialoglu C. Zinc and cadmium complexes of a plant metallothionein under radical stress: desulfurisation reactions associated with the formation of trans lipids in model membranes Chem Eur J 2009;15:6015–6024.
  • Chatgilialoglu C, Ferreri C, Melchiore M, Sansone A, Torreggiani A. Lipid geometrical isomerism: from chemistry to biology and diagnostics. Chem Rev 2014;114:255–284.
  • Hug GL, Wang Y, Schöneich C, Jiang P-Y, Fessenden RW. Multiple time scale in pulse radiolysis. Application to bromide solutions and dipeptides. Radiat Phys Chem 1999;54:559–566.
  • Janata E, Schuler RH. Rate constant for scavenging eaq− in N2O-saturated solutions. J Phys Chem 1982;86:2078–2084.
  • Bevington PR. Data reduction and error analysis for the physical sciences. New York: McGraw-Hill; 1969.
  • Marciniak B, Bobrowski K, Hug GL. Quenching of triplet states of aromatic ketones by sulfur-containing amino acids in solution. Evidence for electron transfer. J Phys Chem 1993;97:11937–11943.
  • Schöneich C, Bobrowski K. Intramolecular hydrogen transfer as the key step in the dissociation of hydroxyl radical adducts of (alkylthio)ethanol derivatives. J Am Chem Soc 1993;115:6538–6547.
  • Pogocki DM. Investigation of radical processes induced by hydroxyl radical in amino acids and peptides containing thioether group. In: Department of Radiation Chemistry and Technology. Warsaw, Poland: Institute of Nuclear Chemistry and Technology; 1996.
  • Asmus K-D, Göbl M, Hiller K-O, Mahling S, Mönig J. S∴N and S∴O three-electron-bonded radicals and radical cations in aqueous solutions. J Chem Soc Perkin Trans 1985;2:641–646.
  • Hiller K-O, Asmus K-D. Tl2+ and Ag2+ metal-ion-induced oxidation of methionine in aqueous solution. A pulse radiolysis study. Int J Radiat Biol Relat Stud Phys Chem Med 1981;40:597–604.
  • Mieden OJ, von Sonntag, C. Peptide free-radicals: the reactions of OH radicals with glycine anhydride and its methyl derivatives sarcosine and alanine anhydride. A pulse radiolysis and product study. Z Naturforsch 1989;44b:959–974.
  • Spinks JWT, Woods RJ. An introduction to radiation chemistry. 3rd ed. New York: Wiley; 1990:100.
  • Roeser J, Alting NFA, Permentier HP, Bruins AP, Bischoff R. Boron-doped diamond electrodes for the electrochemical oxidation and cleavage of peptides. Anal Chem 2013;85:6626–6632.
  • Bobrowski K, Hug GL, Pogocki D, Marciniak B, Schöneich C. Sulfur radical cation-peptide bond complex in the one-electron oxidation of S-methylglutathione. J Am Chem Soc 2007;129:9236–9245.
  • Greene J, Henderson JW Jr, Wikswo JP. Rapid and precise determination of cellular amino acid flux rates using HPLC with automated derivatization with absorbance detection. Agilent Technologies; 2009. https://www.chem.agilent.com/Library/applications/5990-3283EN.pdf.
  • Bartolomeo M P, Maisano F. Validation of a reversed phase HPLC method for quantitative amino acid analysis. J Biomol Tech 2006;17:131–137.
  • Bielski BH, Cabelli DE, Arudi RL, Ross AB. Reactivity of HO2/O2− radicals in aqueous solution. J Phys Chem Ref Data 1985;14:1041–1051.
  • Buxton GV, Greenstock CL, Helman WP, Ross AB. Critical review of rate constants for reactions of hydrated electron, hydrogen atoms and hydroxyl radicals ((•OH)/•O−) in aqueous solution. J Phys Chem Ref Data 1988;17:513–886.
  • Ross AB, Mallard WG, Helman WP, Buxton GV, Huie RE, Neta P. NDRLNIST Solution Kinetic Database Ver. 3, Notre Dame Radiation Laboratory and NIST Standard Reference Data, Notre Dame, IN, and Gaithersburg, MD; 1998.
  • Roeser J, Permentier HP, Bruins AP, Bischoff R. Electrochemical oxidation and cleavage of tyrosine- and tryptophan-containing tripeptides. Anal Chem 2010;82:7556–7565.
  • Permentier HP, Jurva U, Barroso B, Bruins AP. Electrochemical oxidation and cleavage of peptides analyzed with on-line mass spectrometric detection. Rapid Commun Mass Spectrom 2003;17:1585–1592.
  • Permentier HP, Bruins AP. Electrochemical oxidation and cleavage of proteins with on-line mass spectrometric detection: development of an instrumental alternative to enzymatic protein digestion. J Am Soc Mass Spectrom 2004;15:1707–1716.
  • Herzog G, Arrigan DWM. Electrochemical strategies for the label-free detection of amino acids, peptides and proteins. Analyst 2007;132:615–632.
  • von Sonntag C. Free-radical-induced DNA damage and its repair: a chemical perspective. Berlin: Springer-Verlag; 2006:160–194, Chapter 8.