247
Views
6
CrossRef citations to date
0
Altmetric
Original Article

Curcumin and its synthetic analogue dimethoxycurcumin differentially modulates antioxidant status of normal human peripheral blood mononuclear cells

ORCID Icon, , ORCID Icon &
Pages 583-591 | Received 31 Mar 2017, Accepted 16 Mar 2018, Published online: 06 Apr 2018

References

  • Strimpakos AS, Sharma RA. Curcumin: preventive and therapeutic properties in laboratory studies and clinical trials. Antioxid Redox Signal. 2008;10(3):511–545.
  • Anand P, Thomas SG, Kunnumakkara AB, et al. Biological activities of curcumin and its analogues (Congeners) made by man and Mother Nature. Biochem Pharmacol. 2008;76(11):1590–1611.
  • Sharma OP. Antioxidant activity of curcumin and related compounds. Biochem Pharmacol. 1976;25(15):1811–1812.
  • Wright JS. Predicting the antioxidant activity of curcumin and curcuminoids. J Mol Struct. 2002;591(1–3):207–217.
  • Sun YM, Zhang HY, Chen DZ, et al. Theoretical elucidation on the antioxidant mechanism of curcumin: a DFT study. Org Lett. 2002;4(17):2909–2911.
  • Priyadarsini KI, Maity DK, Naik GH, et al. Role of phenolic O–H and methylene hydrogen on the free radical reactions and antioxidant activity of curcumin. Free Radic Biol Med. 2003;35(5):475–484.
  • Chen WF, Deng SL, Zhou B, et al. Curcumin and its analogues as potent inhibitors of low density lipoprotein oxidation: H-atom abstraction from the phenolic groups and possible involvement of the 4-hydroxy-3-methoxyphenyl groups. Free Radic Biol Med. 2006;40(3):526–535.
  • Sugiyama Y, Kawakishi S, Osawa T. Involvement of the beta-diketone moiety in the antioxidative mechanism of tetrahydrocurcumin. Biochem Pharmacol. 1996;52(4):519–525.
  • Jovanovic SV, Steenken S, Boone CW, et al. H-atom transfer is a preferred antioxidant mechanism of curcumin. J Am Chem Soc. 1999;121(41):9677–9681.
  • Pae HO, Jeong SO, Kim HS, et al. Dimethoxycurcumin, a synthetic curcumin analogue with higher metabolic stability, inhibits NO production, inducible NO synthase expression and NF-kappaB activation in RAW264.7 macrophages activated with LPS. Mol Nutr Food Res. 2008;52(9):1082–1091.
  • Tamvakopoulos C, Dimas K, Sofianos ZD, et al. Metabolism and anticancer activity of the curcumin analogue, Dimethoxycurcumin. Clin Cancer Res. 2007;13(4):1269–1277.
  • Kunwar A, Jayakumar S, Srivastava AK, et al. Dimethoxycurcumin-induced cell death in human breast carcinoma MCF7 cells: evidence for pro-oxidant activity, mitochondrial dysfunction, and apoptosis. Arch Toxicol. 2012;86(4):603–614.
  • Lowry OH, Rosebrough NJ, Farr AL, et al. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951;193(1):265–275.
  • Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem. 1979;95(2):351–358.
  • Kiruthiga PV, Pandian SK, Devi KP. Silymarin protects PBMC against B(a)P induced toxicity by replenishing redox status and modulating glutathione metabolizing enzymes – an in vitro study. Toxicol Appl Pharmacol. 2010;247(2):116–128.
  • Aebi H. Catalase in vitro. Methods Enzymol. 1984;105:121–126.
  • Bellomo G, Mirabelli F, Dimonte D, et al. Formation and reduction of glutathione-protein mixed disulfides during oxidative stress. A study with isolated hepatocytes and menadione (2-methyl-1,4-naphthoquinone). Biochem Pharmacol. 1987;36(8):1313–1320.
  • Baker MA, Cerniglia GJ, Zaman A. Microtiter plate assay for the measurement of glutathione and glutathione disulfide in large numbers of biological samples. Anal Biochem. 1990;190(2):360–365.
  • Alidoost F, Gharagozloo M, Bagherpour B, et al. Effects of silymarin on the proliferation and glutathione levelsof peripheral blood mononuclear cells from β-thalassemia major patients. Int Immunopharmacol. 2006;6(8):1305–1310.
  • Lee JW, Hong HM, Kwon DD, et al. Dimethoxycurcumin, a structural analogue of curcumin, induces apoptosis in human renal carcinoma caki cells through the production of reactive oxygen species, the release of cytochrome c, and the activation of caspase-3. Korean J Urol. 2010;51(12):870–878.
  • Kunwar A, Simon E, Singh U, et al. Interaction of a curcumin analogue Dimethoxycurcumin with DNA. Chem Biol Drug Des. 2011;77(4):281–287.
  • Grattagliano I, Bonfrate L, Diogo CV, et al. Biochemical mechanisms in drug-induced liver injury: certainties and doubts. World J Gastroenterol. 2009;15(39):4865–4876.
  • Paramasivam R, Dominic S, Arul Raj C, et al. Evaluation of enzymatic and non-enzymatic antioxidant properties of Aerva lanata (l) − An in vitro study. Int J Pharm Pharm Sci. 2012;4:522–526.
  • Banerjee A, Kunwar A, Mishra B, et al. Concentration dependent antioxidant/pro-oxidant activity of curcumin studies from AAPH induced hemolysis of RBCs. Chem Biol Interact. 2008;174(2):134–139.
  • Masuda T, Maekawa T, Hidaka K, et al. Chemical studies on antioxidant mechanism of curcumin: analysis of oxidative coupling products from curcumin and linoleate. J Agric Food Chem. 2001;49(5):2539–2547.
  • Sreejayan RMN, Rao MN. Curcuminoids as potent inhibitors of lipid peroxidation. J Pharm Pharmacol. 1994;46(12):1013–1016.
  • Kalpana C, Menon VP. Modulatory effects of curcumin on lipid peroxidation and antioxidant status during nicotine-induced toxicity. Pol J Pharmacol. 2004;56(5):581–586.
  • Kalpana C, Sudheer AR, Rajasekharan KN, et al. Comparative effects of curcumin and its synthetic analogue on tissue lipid peroxidation and antioxidant status during nicotine-induced toxicity. Singapore Med J. 2007;48(2):124–130.
  • Howell JC, Chun E, Farrell AN, et al. Global microRNA expression profiling: curcumin (diferuloylmethane) alters oxidative stress-responsive microRNAs in human ARPE-19 cells. Mol Vis. 2013;19:544–560.
  • Deponte M. Glutathione catalysis and the reaction mechanisms of glutathione-dependent enzymes. Biochim Biophys Acta. 2013;1830(5):3217–3266.
  • Pompella A, Visvikis A, Paolicchi A, et al. The changing faces of glutathione, a cellular protagonist. Biochem Pharmacol. 2003;66(8):1499–1503.
  • Ikeda M, Hirose Y, Miyoshi K, et al. Nuclear factor κB (NF-κB) activation by hydrogen peroxide in human epidermal keratinocytes and the restorative effect of interleukin-10. J Dermatol Sci. 2002;28(2):159–170.
  • Zhang J, Johnston G, Stebler B, et al. Hydrogen peroxide activates NFkappaB and the interleukin-6 promoter through NFkappaB-inducing kinase. Antioxid Redox Signal. 2001;3(3):493–504.
  • Takada Y, Mukhopadhyay A, Kundu GC, et al. Hydrogen peroxide activates NF-kappa B through tyrosine phosphorylation of I kappa B alpha and serine phosphorylation of p65: evidence for the involvement of I kappa B alpha kinase and Syk protein-tyrosine kinase. J Biol Chem. 2003;278(26):24233–24241.
  • Zhou LZ-H, Johnson AP, Rando TA. NFκB and AP-1 mediate transcriptional responses to oxidative stress in skeletal muscle cells. Free Radic Biol Med. 2001;31(11):1405–1416.
  • Kunwar A, Barik A, Mishra B, et al. Quantitative cellular uptake, localization and cytotoxicity of curcumin in normal and tumor cells. Biochim Biophys Acta. 2008;1780(4):673–679.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.