2,715
Views
171
CrossRef citations to date
0
Altmetric
Review Article

ROS and RNS signalling: adaptive redox switches through oxidative/nitrosative protein modifications

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 507-543 | Received 09 Nov 2017, Accepted 21 Mar 2018, Published online: 19 Apr 2018

References

  • Wagner BA, Venkataraman S, Buettner GR. The rate of oxygen utilization by cells. Free Radic Biol Med. 2011;51(3):700–712.
  • Van Boxel GI, Doherty WL, Parmar M. Cellular oxygen utilization in health and sepsis. Cont Educ Anest Crit Care. 2012;12(4):207–212.
  • Di Meo S, Reed TT, Venditti P, et al. Role of ROS and RNS sources in physiological and pathological conditions. Oxid Med Cell Longev. 2016;2016:1245049.
  • Inoue M, Sato EF, Nishikawa M, et al. Mitochondrial generation of reactive oxygen species and its role in aerobic life. Curr Med Chem. 2003;10(23):2495–2505.
  • Alberts B, Johnson A, Lewis J, et al. Molecular biology of the cell. The mitochondrion; 4th ed. New-York: Garland Science; 2002.
  • Murphy MP. How mitochondria produce reactive oxygen species. Biochem J. 2009;417(1):1–13.
  • Barja G. Mitochondrial oxygen consumption and reactive oxygen species production are independently modulated: implications for aging studies. Rejuvenation Res. 2007;10(2):215–224.
  • Bedard K, Krause KH. The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev. 2007;87(1):245–313.
  • Rossi F, Zatti M. Biochemical aspects of phagocytosis in polymorphonuclear leucocytes. NADH and NADPH oxidation by the granules of resting and phagocytizing cells. Experientia. 1964;20(1):21–23.
  • Fridovich I. Superoxide anion radical (O2−.), superoxide dismutases, and related matters. J Biol Chem. 1997;272(30):18515–18517.
  • Koppenol WH. The Haber-Weiss cycle −70 years later. Redox Rep. 2001;6(4):229–234.
  • Stadtman ER, Berlett BS. Fenton chemistry. Amino acid oxidation. J Biol Chem. 1991;266(26):17201–17211.
  • Pacher P, Beckman JS, Liaudet L. Nitric oxide and peroxynitrite in health and disease. Physiol Rev. 2007;87(1):315–424.
  • Ullrich V, Kissner R. Redox signaling: bioinorganic chemistry at its best. J Inorg Biochem. 2006;100(12):2079–2086.
  • Ray PD, Huang BW, Tsuji Y. Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell Signal. 2012;24(5):981–990.
  • Davies KJ, Lin SW, Pacifici RE. Protein damage and degradation by oxygen radicals. IV. Degradation of denatured protein. J Biol Chem. 1987;262(20):9914–9920.
  • Lyras L, Perry RH, Perry EK, et al. Oxidative damage to proteins, lipids, and DNA in cortical brain regions from patients with dementia with Lewy bodies. J Neurochem. 1998;71(1):302–312.
  • Davies MJ. The oxidative environment and protein damage. Biochim Biophys Acta. 2005;1703(2):93–109.
  • Sies H, Berndt C, Jones DP. Oxidative stress. Annu Rev Biochem. 2017;86:715–748.
  • Egea J, Fabregat I, Frapart YM, et al. European contribution to the study of ROS: a summary of the findings and prospects for the future from the COST action BM1203 (EU-ROS). Redox Biol. 2017;13:94–162.
  • Kabel A. Free radicals and antioxidants: role of enzymes and nutrition. World J Nutr. 2014;2:35–38.
  • Birben E, Sahiner UM, Sackesen C, et al. Oxidative stress and antioxidant defense. World Allergy Organ J. 2012;5(1):9–19.
  • Finkel T. Signal transduction by reactive oxygen species. J Cell Biol. 2011;194(1):7–15.
  • Forman HJ, Ursini F, Maiorino M. An overview of mechanisms of redox signaling. J Mol Cell Cardiol. 2014;73:2–9.
  • Nam HJ, Park YY, Yoon G, et al. Co-treatment with hepatocyte growth factor and TGF-beta1 enhances migration of HaCaT cells through NADPH oxidase-dependent ROS generation. Exp Mol Med. 2010;42(4):270–279.
  • Meier B, Radeke HH, Selle S, et al. Human fibroblasts release reactive oxygen species in response to interleukin-1 or tumour necrosis factor-alpha. Biochem J. 1989;263(2):539–545.
  • Lien GS, Wu MS, Bien MY, et al. Epidermal growth factor stimulates nuclear factor-kappa B activation and heme oxygenase-1 expression via c-Src, NADPH oxidase, PI3K, and Akt in human colon cancer cells. PLoS One. 2014;9(8):e104891.
  • Lee KH, Kim SW, Kim JR. Reactive oxygen species regulate urokinase plasminogen activator expression and cell invasion via mitogen-activated protein kinase pathways after treatment with hepatocyte growth factor in stomach cancer cells. J Exp Clin Cancer Res. 2009;28:73.
  • Schieber M, Chandel NS. ROS function in redox signaling and oxidative stress. Curr Biol. 2014;24(10):R453–RR462.
  • Adams L, Franco MC, Estevez AG. Reactive nitrogen species in cellular signaling. Exp Biol Med. 2015;240(6):711–717.
  • Forman HJ. Redox signaling: an evolution from free radicals to aging. Free Radic Biol Med. 2016;97:398–407.
  • Weidinger A, Kozlov AV. Biological activities of reactive oxygen and nitrogen species: oxidative stress versus signal transduction. Biomolecules. 2015;5(2):472–484.
  • Gould N, Doulias PT, Tenopoulou M, et al. Regulation of protein function and signaling by reversible cysteine S-nitrosylation. J Biol Chem. 2013;288(37):26473–26479.
  • Habich M, Riemer J. Detection of cysteine redox states in mitochondrial proteins in intact mammalian cells. Methods Mol Biol. 2017;1567:105–138.
  • Radi R. Protein tyrosine nitration: biochemical mechanisms and structural basis of functional effects. Acc Chem Res. 2013;46(2):550–559.
  • Ursini F, Maiorino M, Forman HJ. Redox homeostasis: the golden mean of healthy living. Redox Biol. 2016;8:205–215.
  • Niki E. Antioxidants: basic principles, emerging concepts, and problems. Biomed J. 2014;37(3):106–111.
  • Sarsour EH, Kalen AL, Goswami PC. Manganese superoxide dismutase regulates a redox cycle within the cell cycle. Antioxid Redox Signal. 2014;20(10):1618–1627.
  • Niki E. Oxidative stress and antioxidants: distress or eustress? Arch Biochem Biophys. 2016;595:19–24.
  • Sies H. Hydrogen peroxide as a central redox signaling molecule in physiological oxidative stress: oxidative eustress. Redox Biol. 2017;11:613–619.
  • Jones DP, Sies H. The redox code. Antioxid Redox Signal. 2015;23(9):734–746.
  • Halliwell B, Gutteridge JMC Free radicals in biology and medicine. Oxford: Oxford University Press; 1999.
  • Parke DV, Sapota A. Chemical toxicity and reactive oxygen species. Int J Occup Med Environ Health. 1996;9(4):331–340.
  • Valko M, Leibfritz D, Moncol J, et al. Free radicals and antioxidants in normal physiological functions and human diseases. Int J Biochem Cell Biol. 2007;39(1):44–84.
  • Turrens JF. Mitochondrial formation of reactive oxygen species. J Physiol. 2003;552(2):335–344.
  • Matsumoto S, Koshiishi I, Inoguchi T, et al. Confirmation of superoxide generation via xanthine oxidase in streptozotocin-induced diabetic mice. Free Radic Res. 2003;37(7):767–772.
  • Fitzpatrick FA. Cyclooxygenase enzymes: regulation and function. Curr Pharm Des. 2004;10(6):577–588.
  • Andreou A, Feussner I. Lipoxygenases – structure and reaction mechanism. Phytochemistry. 2009;70(13–14):1504–1510.
  • Gonzalez FJ. Role of cytochromes P450 in chemical toxicity and oxidative stress: studies with CYP2E1. Mutat Res. 2005;569(1–2):101–110.
  • Förstermann U, Sessa WC. Nitric oxide synthases: regulation and function. Eur Heart J. 2012;33(7): 829–37, 837a.
  • Luo S, Lei H, Qin H, et al. Molecular mechanisms of endothelial NO synthase uncoupling. Curr Pharm Des. 2014;20(22):3548–3553.
  • Daiber A. Redox signaling (cross-talk) from and to mitochondria involves mitochondrial pores and reactive oxygen species. Biochim Biophys Acta. 2010;1797(6–7):897–906.
  • Daiber A, Di Lisa F, Oelze M, et al. Crosstalk of mitochondria with NADPH oxidase via reactive oxygen and nitrogen species signalling and its role for vascular function. Br J Pharmacol. 2017;174(12):1670–1689.
  • Morgan MJ, Liu ZG. Crosstalk of reactive oxygen species and NF-κB signaling. Cell Res. 2011;21(1):103–115.
  • Finkel T. Signal transduction by mitochondrial oxidants. J Biol Chem. 2012;287(7):4434–4440.
  • Brand MD. Mitochondrial generation of superoxide and hydrogen peroxide as the source of mitochondrial redox signaling. Free Radic Biol Med. 2016;100:14–31.
  • Kudryavtseva AV, Krasnov GS, Dmitriev AA, et al. Mitochondrial dysfunction and oxidative stress in aging and cancer. Oncotarget. 2016;7(29):44879–44905.
  • Hoffman S, Nolin J, McMillan D, et al. Thiol redox chemistry: role of protein cysteine oxidation and altered redox homeostasis in allergic inflammation and asthma. J Cell Biochem. 2015;116(6):884–892.
  • Miller DM, Buettner GR, Aust SD. Transition metals as catalysts of “autooxidation” reactions. Free Radic Biol Med. 1990;8(1):95–108.
  • James AM, Smith RA, Murphy MP. Antioxidant and prooxidant properties of mitochondrial coenzyme Q. Arch Biochem Biophys. 2004;423(1):47–56.
  • Acin-Perez R, Salazar E, Brosel S, et al. Modulation of mitochondrial protein phosphorylation by soluble adenylyl cyclase ameliorates cytochrome oxidase defects. EMBO Mol Med. 2009;1(8–9):392–406.
  • Quinlan CL, Treberg JR, Perevoshchikova IV, et al. Native rates of superoxide production from multiple sites in isolated mitochondria measured using endogenous reporters. Free Radic Biol Med. 2012;53(9):1807–1817.
  • Goncalves RL, Quinlan CL, Perevoshchikova IV, et al. Sites of superoxide and hydrogen peroxide production by muscle mitochondria assessed ex vivo under conditions mimicking rest and exercise. J Biol Chem. 2015;290(1):209–227.
  • Maranzana E, Barbero G, Falasca AI, et al. Mitochondrial respiratory supercomplex association limits production of reactive oxygen species from complex I. Antioxid Redox Signal. 2013;19(13):1469–1480.
  • Ghelli A, Tropeano CV, Calvaruso MA, et al. The cytochrome b p.278Y > C mutation causative of a multisystem disorder enhances superoxide production and alters supramolecular interactions of respiratory chain complexes. Hum Mol Genet. 2013;22(11):2141–2151.
  • Lenaz G, Genova ML. Structural and functional organization of the mitochondrial respiratory chain: a dynamic super-assembly. Int J Biochem Cell Biol. 2009;41(10):1750–1772.
  • Acin-Perez R, Enriquez JA. The function of the respiratory supercomplexes: the plasticity model. Biochim Biophys Acta. 2014;1837(4):444–450.
  • Lenaz G, Tioli G, Falasca AI, et al. Complex I function in mitochondrial supercomplexes. Biochim Biophys Acta. 2016;1857(7):991–1000.
  • Babior BM, Kipnes RS, Curnutte JT. Biological defense mechanisms. The production by leukocytes of superoxide, a potential bactericidal agent. J Clin Invest. 1973;52(3):741–744.
  • Gieche J, Mehlhase J, Licht A, et al. Protein oxidation and proteolysis in RAW264.7 macrophages: effects of PMA activation. Biochim Biophys Acta. 2001;1538(2–3):321–328.
  • Fialkow L, Wang Y, Downey GP. Reactive oxygen and nitrogen species as signaling molecules regulating neutrophil function. Free Radic Biol Med. 2007;42(2):153–164.
  • Garaude J, Acín-Pérez R, Martínez-Cano S, et al. Mitochondrial respiratory-chain adaptations in macrophages contribute to antibacterial host defense. Nat Immunol. 2016;17(9):1037–1045.
  • Matono R, Miyano K, Kiyohara T, et al. Arachidonic acid induces direct interaction of the p67 (phox)-Rac complex with the phagocyte oxidase Nox2, leading to superoxide production. J Biol Chem. 2014;289(36):24874–24884.
  • Jiang F, Zhang Y, Dusting GJ. NADPH oxidase-mediated redox signaling: roles in cellular stress response, stress tolerance, and tissue repair. Pharmacol Rev. 2011;63(1):218–242.
  • Petry A, Weitnauer M, Görlach A. Receptor activation of NADPH oxidases. Antioxid Redox Signal. 2010;13(4):467–487.
  • Meitzler JL, Ortiz de Montellano PR. Caenorhabditis elegans and human dual oxidase 1 (DUOX1) “peroxidase” domains: insights into heme binding and catalytic activity. J Biol Chem. 2009;284(28):18634–18643.
  • Vignais PV. The superoxide-generating NADPH oxidase: structural aspects and activation mechanism. Cell Mol Life Sci. 2002;59(9):1428–1459.
  • Brandes RP, Weissmann N, Schröder K. Nox family NADPH oxidases: molecular mechanisms of activation. Free Radic Biol Med. 2014;76:208–226.
  • Ma MW, Wang J, Zhang Q, et al. NADPH oxidase in brain injury and neurodegenerative disorders. Mol Neurodegener. 2017;12(1):7.
  • Panday A, Sahoo MK, Osorio D, et al. NADPH oxidases: an overview from structure to innate immunity-associated pathologies. Cell Mol Immunol. 2015;12(1):5–23.
  • Miyano K, Sumimoto H. Assessment of the role for Rho family GTPases in NADPH oxidase activation. Methods Mol Biol. 2012;827:195–212.
  • Pick E. Role of the Rho GTPase Rac in the activation of the phagocyte NADPH oxidase: outsourcing a key task. Small GTPases. 2014;5:e27952.
  • Bustelo XR, Sauzeau V, Berenjeno IM. GTP-binding proteins of the Rho/Rac family: regulation, effectors and functions in vivo. BioEssays. 2007;29(4):356–370.
  • Damiano S, Fusco R, Morano A, et al. Reactive oxygen species regulate the levels of dual oxidase (Duox1-2) in human neuroblastoma cells. PLoS One. 2012;7(4):e34405.
  • Yang D, Elner SG, Bian ZM, et al. Pro-inflammatory cytokines increase reactive oxygen species through mitochondria and NADPH oxidase in cultured RPE cells. Exp Eye Res. 2007;85(4):462–472.
  • Purushothaman D, Sarin A. Cytokine-dependent regulation of NADPH oxidase activity and the consequences for activated T cell homeostasis. J Exp Med. 2009;206(7):1515–1523.
  • Dhaunsi GS, Alsaeid M, Akhtar S. Phytanic acid activates NADPH oxidase through transactivation of epidermal growth factor receptor in vascular smooth muscle cells. Lipids Health Dis. 2016;15:105.
  • Yun MR, Park HM, Seo KW, et al. 5-Lipoxygenase plays an essential role in 4-HNE-enhanced ROS production in murine macrophages via activation of NADPH oxidase. Free Radic Res. 2010;44(7):742–750.
  • Chattopadhyay R, Tinnikov A, Dyukova E, et al. 12/15-Lipoxygenase-dependent ROS production is required for diet-induced endothelial barrier dysfunction. J Lipid Res. 2015;56(3)/15:562–577.
  • Martínez-Revelles S, Avendaño MS, García-Redondo AB, et al. Reciprocal relationship between reactive oxygen species and cyclooxygenase-2 and vascular dysfunction in hypertension. Antioxid Redox Signal. 2013;18(1):51–65.
  • Swindle EJ, Coleman JW, DeLeo FR, et al. FcepsilonRI- and Fcgamma receptor-mediated production of reactive oxygen species by mast cells is lipoxygenase- and cyclooxygenase-dependent and NADPH oxidase-independent. J Immunol. 2007;179(10):7059–7071.
  • Rouzer CA, Marnett LJ. Cyclooxygenases: structural and functional insights. J Lipid Res. 2009;50(Suppl):S29–SS34.
  • Ricciotti E, FitzGerald GA. Prostaglandins and inflammation. Arterioscler Thromb Vasc Biol. 2011;31(5):986–1000.
  • Uchida KM, Shibata T. 15-Deoxy-Delta(12,14)-prostaglandin J2: an electrophilic trigger of cellular responses. Chem Res Toxicol. 2008;21(1):138–144.
  • Hong HY, Jeon WK, Kim BC. Up-regulation of heme oxygenase-1 expression through the Rac1/NADPH oxidase/ROS/p38 signaling cascade mediates the anti-inflammatory effect of 15-deoxy-delta 12,14-prostaglandin J2 in murine macrophages. FEBS Lett. 2008;582(6):861–868.
  • Cho KJ, Seo JM, Kim JH. Bioactive lipoxygenase metabolites stimulation of NADPH oxidases and reactive oxygen species. Mol Cells. 2011;32(1):1–5.
  • de Carvalho DD, Sadok A, Bourgarel-Rey V, et al. Nox1 downstream of 12-lipoxygenase controls cell proliferation but not cell spreading of colon cancer cells. Int J Cancer. 2008;122(8):1757–1764.
  • Mahipal SV, Subhashini J, Reddy MC, et al. Effect of 15-lipoxygenase metabolites, 15-(S)-HPETE and 15-(S)-HETE on chronic myelogenous leukemia cell line K-562: reactive oxygen species (ROS) mediate caspase-dependent apoptosis. Biochem Pharmacol. 2007;74(2):202–214.
  • Li Q, Mao M, Qiu Y, et al. Key role of ROS in the process of 15-lipoxygenase/15-hydroxyeicosatetraenoiccid-induced pulmonary vascular remodeling in hypoxia pulmonary hypertension. PLoS One. 2016;11(2):e0149164.
  • Harrison R. Structure and function of xanthine oxidoreductase: where are we now? Free Radic Biol Med. 2002;33(6):774–797.
  • Kostic DA, Dimitrievich DS, Stoyanovich GS, et al. Xanthine oxidase: isolation, assays of activity, and inhibition. J Chemother. 2015:article ID 294858.
  • Enroth C, Eger BT, Okamoto K, et al. Crystal structures of bovine milk xanthine dehydrogenase and xanthine oxidase: structure-based mechanism of conversion. Proc Natl Acad Sci USA. 2000;97(20):10723–10728.
  • Battelli MG, Polito L, Bortolotti M, et al. Xanthine oxidoreductase-derived reactive species: physiological and pathological effects. Oxid Med Cell Longev. 2016;2016:3527579.
  • Cantu-Medellin N, Kelley EE. Xanthine oxidoreductase-catalyzed reactive species generation: a process in critical need of reevaluation. Redox Biol. 2013;1:353–358.
  • Kelley EE, Khoo NK, Hundley NJ, et al. Hydrogen peroxide is the major oxidant product of xanthine oxidase. Free Radic Biol Med. 2010;48(4):493–498.
  • Zanger UM, Schwab M. Cytochrome P450 enzymes in drug metabolism: regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacol Ther. 2013;138(1):103–141.
  • Singh S, Rajendran R, Kuroda K, et al. Oxidative stress and breast cancer biomarkers: the case of the cytochrome P450 2E1. JCMT. 2016;2(7):268–276.
  • Sies H. Role of metabolic H2O2 generation: redox signaling and oxidative stress. J Biol Chem. 2014;289(13):8735–8741.
  • Dupuy C, Virion A, Ohayon R, et al. Mechanism of hydrogen peroxide formation catalyzed by NADPH oxidase in thyroid plasma membrane. J Biol Chem. 1991;266(6):3739–3743.
  • Tyurin-Kuzmin PA, Zhdanovskaya ND, Sukhova AA, et al. Nox4 and Duox1/2 mediate redox activation of mesenchymal cell migration by PDGF. PLoS One. 2016;11(4):e0154157.
  • Elsner M, Gehrmann W, Lenzen S. Peroxisome-generated hydrogen peroxide as important mediator of lipotoxicity in insulin-producing cells. Diabetes. 2011;60(1):200–208.
  • Lubos E, Loscalzo J, Handy DE. Glutathione peroxidase-1 in health and disease: from molecular mechanisms to therapeutic opportunities. Antioxid Redox Signal. 2011;15(7):1957–1997.
  • Espinoza SE, Guo H, Fedarko N, et al. Glutathione peroxidase enzyme activity in aging. J Gerontol A Biol Sci Med Sci. 2008;63(5):505–509.
  • Rhee SG, Kil IS. Multiple functions and regulation of mammalian peroxiredoxins. Annu Rev Biochem. 2017;86:749–775.
  • Rhee SG, Woo HA, Kang D. The role of peroxiredoxins in the transduction of H2O2 signals. Antioxid Redox Signal. 2018;28(7):537–557.
  • Singh PK, Iqbal N, Sirohi HV, et al. Structural basis of activation of mammalian heme peroxidases. Prog Biophys Mol Biol. 2018;133:49–55.
  • Stone JR, Yang S. Hydrogen peroxide: a signaling messenger. Antioxid Redox Signal. 2006;8(3–4):243–270.
  • Van der Vliet A, Janssen-Heininger YM. Hydrogen peroxide as a damage signal in tissue injury and inflammation: murderer, mediator, or messenger? J Cell Biochem. 2014;115(3):427–435.
  • Rhee SG, Kil IS. Mitochondrial H2O2 signaling is controlled by the concerted action of peroxiredoxin III and sulfiredoxin: linking mitochondrial function to circadian rhythm. Free Radic Biol Med. 2016;100:73–80.
  • Patel SA, Velingkaar NS, Kondratov RV. Transcriptional control of antioxidant defense by the circadian clock. Antioxid Redox Signal. 2014;20(18):2997–3006.
  • O’Neill JS, Feeney KA. Circadian redox and metabolic oscillations in mammalian systems. Antioxid Redox Signal. 2014;20(18):2966–2981.
  • Wilking M, Ndiaye M, Mukhtar H, et al. Circadian rhythm connections to oxidative stress: implications for human health. Antioxid Redox Signal. 2013;19(2):192–208.
  • Milev NB, Rhee SG, Reddy AB. Cellular timekeeping: it’s redox o’clock. Cold Spring Harb Perspect Biol. 2017:a027698.
  • Ma Q. Role of Nrf2 in oxidative stress and toxicity. Annu Rev Pharmacol Toxicol. 2013;53:401–426.
  • Vladimirov YA, Proskurnina EV. Free radicals and cell chemiluminescence. Biochem Moscow. 2009;74(13):1545–1566.
  • Haber F, Weiss J. The catalytic decomposition of hydrogen peroxide by iron salts. Proc R Soc. 1934;147(861):332–351.
  • Fenton HJH. LXXIII.—Oxidation of tartaric acid in presence of iron. J Chem Soc Trans. 1894;65:899–910.
  • Lymar SV, Khairutdinov RF, Hurst JK. Hydroxyl radical formation by O-O bond homolysis in peroxynitrous acid. Inorg Chem. 2003;42(17):5259–5266.
  • Sturzbecher-Höhne M, Nauser T, Kissner R, et al. Photon-initiated homolysis of peroxynitrous acid. Inorg Chem. 2009;48(15):7307–7312.
  • Semenov NN Some problems in chemical kinetics and reactivity. New Jersey: Princeton University Press, Princeton University; 1959.
  • Rosen GM, Tsai P, Pou S. Mechanism of free-radical generation by nitric oxide synthase. Chem Rev. 2002;102(4):1191–1200.
  • Zhou L, Zhu DY. Neuronal nitric oxide synthase: structure, subcellular localization, regulation, and clinical implications. Nitric Oxide. 2009;20(4):223–230.
  • Green SJ, Mellouk S, Hoffman SL, et al. Cellular mechanisms of nonspecific immunity to intracellular infection: cytokine-induced synthesis of toxic nitrogen oxides from l-arginine by macrophages and hepatocytes. Immunol Lett. 1990;25(1–3):15–19.
  • Green SJ, Scheller LF, Marletta MA, et al. Nitric oxide: cytokine-regulation of nitric oxide in host resistance to intracellular pathogens. Immunol Lett. 1994;43(1–2):87–94.
  • Wallace JL, Ianaro A, Flannigan KL, et al. Gaseous mediators in resolution of inflammation. Semin Immunol. 2015;27(3):227–233.
  • Förstermann U, Münzel T. Endothelial nitric oxide synthase in vascular disease: from marvel to menace. Circulation. 2006;113(13):1708–1714.
  • Costa ED, Rezende BA, Cortes SF, et al. Neuronal nitric oxide synthase in vascular physiology and diseases. Front Physiol. 2016;7:206.
  • Lind M, Hayes A, Caprnda M, et al. Inducible nitric oxide synthase: good or bad? Biomed Pharmacother. 2017;93:370–375.
  • Lacza Z, Pankotai E, Busija DW. Mitochondrial nitric oxide synthase: current concepts and controversies. Front Biosci (Landmark Ed). 2009;14:4436–4443.
  • Klatt P, Pfeiffer S, List BM, et al. Characterization of heme-deficient neuronal nitric-oxide synthase reveals a role for heme in subunit dimerization and binding of the amino acid substrate and tetrahydrobiopterin. J Biol Chem. 1996;271(13):7336–7342.
  • List BM, Klösch B, Völker C, et al. Characterization of bovine endothelial nitric oxide synthase as a homodimer with down-regulated uncoupled NADPH oxidase activity: tetrahydrobiopterin binding kinetics and role of haem in dimerization. Biochem J. 1997;323(1):159–165.
  • Schmidt PP, Lange R, Gorren AC, et al. Formation of a protonated trihydrobiopterin radical cation in the first reaction cycle of neuronal and endothelial nitric oxide synthase detected by electron paramagnetic resonance spectroscopy. J Biol Inorg Chem. 2001;6(2):151–158.
  • Piazza M, Guillemette JG, Dieckmann T. Dynamics of nitric oxide synthase-calmodulin interactions at physiological calcium concentrations. Biochemistry. 2015;54(11):1989–2000.
  • Spratt DE, Taiakina V, Palmer M, et al. Differential binding of calmodulin domains to constitutive and inducible nitric oxide synthase enzymes. Biochemistry. 2007;46(28):8288–8300.
  • Hemmens B, Goessler W, Schmidt K, et al. Role of bound zinc in dimer stabilization but not enzyme activity of neuronal nitric-oxide synthase. J Biol Chem. 2000;275(46):35786–35791.
  • Hinchee-Rodriguez K, Garg N, Venkatakrishnan P, et al. Neuronal nitric oxide synthase is phosphorylated in response to insulin stimulation in skeletal muscle. Biochem Biophys Res Commun. 2013;435(3):501–505.
  • Su Y. Regulation of endothelial nitric oxide synthase activity by protein–protein interaction. Curr Pharm Des. 2014;20(22):3514–3520.
  • Chen CA, Wang TY, Varadharaj S, et al. S-glutathionylation uncouples eNOS and regulates its cellular and vascular function. Nature. 2010;468(7327):1115–1118.
  • Zou MH, Shi C, Cohen RA. Oxidation of the zinc-thiolate complex and uncoupling of endothelial nitric oxide synthase by peroxynitrite. J Clin Invest. 2002;109(6):817–826.
  • Berka V, Liu W, Wu G, et al. Comparison of oxygen-induced radical intermediates in iNOS oxygenase domain with those from nNOs and eNOS. J Inorg Biochem. 2014;139:93–105.
  • Krzyaniak MD, Cruce AA, Vennam P, et al. The tetrahydrobiopterin radical interacting with high- and low-spin heme in neuronal nitric oxide synthase – a new indicator of the extent of NOS coupling. Free Radic Biol Med. 2016;101:367–377.
  • Milstien S, Katusic Z. Oxidation of tetrahydrobiopterin by peroxynitrite: implications for vascular endothelial function. Biochem Biophys Res Commun. 1999;263(3):681–684.
  • Chen CA, Druhan LJ, Varadharaj S, et al. Phosphorylation of endothelial nitric-oxide synthase regulates superoxide generation from the enzyme. J Biol Chem. 2008;283(40):27038–27047.
  • De Pascali F, Hemann C, Samons K, et al. Hypoxia and reoxygenation induce endothelial nitric oxide synthase uncoupling in endothelial cells through tetrahydrobiopterin depletion and S-glutathionylation. Biochemistry. 2014;53(22):3679–3688.
  • Wu F, Szczepaniak WS, Shiva S, et al. Nox2-dependent glutathionylation of endothelial NOS leads to uncoupled superoxide production and endothelial barrier dysfunction in acute lung injury. Am J Physiol Lung Cell Mol Physiol. 2014;307(12):L987–L997.
  • Xia N, Daiber A, Habermeier A, et al. Resveratrol reverses endothelial nitric-oxide synthase uncoupling in apolipoprotein E knockout mice. J Pharmacol Exp Ther. 2010;335(1):149–154.
  • Roe ND, Ren J. Nitric oxide synthase uncoupling: a therapeutic target in cardiovascular diseases. Vascul Pharmacol. 2012;57(5–6):168–172.
  • Pryor WA, Squadrito GL. The chemistry of peroxynitrite: a product from the reaction of nitric oxide with superoxide. Am J Physiol. 1995;268(5 Pt 1):L699–L722.
  • Guzik TJ, West NE, Pillai R, et al. Nitric oxide modulates superoxide release and peroxynitrite formation in human blood vessels. Hypertension. 2002;39(6):1088–1094.
  • Radi R. Peroxynitrite, a stealthy biological oxidant. J Biol Chem. 2013;288(37):26464–26472.
  • Squadrito GL, Pryor WA. Oxidative chemistry of nitric oxide: the roles of superoxide, peroxynitrite, and carbon dioxide. Free Radic Biol Med. 1998;25(4–5):392–403.
  • Meli R, Nauser T, Latal P, et al. Reaction of peroxynitrite with carbon dioxide: intermediates and determination of the yield of CO3− and NO2. J Biol Inorg Chem. 2002;7(1–2):31–36.
  • Pace NJ, Weerapana E. Zinc-binding cysteines: diverse functions and structural motifs. Biomolecules. 2014;4(2):419–434.
  • Abate C, Patel L, Rauscher FJ 3rd, et al. Redox regulation of fos and jun DNA-binding activity in vitro. Science. 1990;249(4973):1157–1161.
  • Yakovlev VA, Mikkelsen RB. Protein tyrosine nitration in cellular signal transduction pathways. J Recept Signal Transduct Res. 2010;30(6):420–429.
  • Denicola A, Souza JM, Radi R. Diffusion of peroxynitrite across erythrocyte membranes. Proc Natl Acad Sci USA. 1998;95(7):3566–3571.
  • Osipov AN, Borisenko GG, Vladimirov YA. Biological activity of hemoprotein nitrosyl complexes. Biochemistry (Mosc). 2007;72(13):1491–1504.
  • Inupakutika MA, Sengupta S, Devireddy AR, et al. The evolution of reactive oxygen species metabolism. J Exp Bot. 2016;67(21):5933–5943.
  • Pillai CK, Pillai KS. Antioxidants in health. Indian J Physiol Pharmacol. 2002;46(1):1–5.
  • Gupta RK, Patel AK, Shah N, et al. Oxidative stress and antioxidants in disease and cancer: a review. Asian Pac J Cancer Prev. 2014;15(11):4405–4409.
  • Chaudière J, Ferrari-Iliou R. Intracellular antioxidants: from chemical to biochemical mechanisms. Food Chem Toxicol. 1999;37(9–10):949–962.
  • Irshad M, Chaudhuri PS. Oxidant-antioxidant system: role and significance in human body. Indian J Exp Biol. 2002;40(11):1233–1239.
  • Fukai T, Ushio-Fukai M. Superoxide dismutases: role in redox signaling, vascular function, and diseases. Antioxid Redox Signal. 2011;15(6):1583–1606.
  • Li Q, Sato EF, Kira Y, et al. A possible cooperation of SOD1 and cytochrome c in mitochondria-dependent apoptosis. Free Radic Biol Med. 2006;40(1):173–181.
  • Che M, Wang R, Li X, et al. Expanding roles of superoxide dismutases in cell regulation and cancer. Drug Discov Today. 2016;21(1):143–149.
  • Scibior D, Czeczot H. Catalase: structure, properties, functions. Postepy Hig Med Dosw (Online). 2006;60:170–180.
  • Radi R, Turrens JF, Chang LY, et al. Detection of catalase in rat heart mitochondria. J Biol Chem. 1991;266(32):22028–22034.
  • Cao C, Leng Y, Kufe D. Catalase activity is regulated by c-Abl and Arg in the oxidative stress response. J Biol Chem. 2003;278(32):29667–29675.
  • Domínguez L, Sosa-Peinado A, Hansberg W. Catalase evolved to concentrate H2O2 at its active site. Arch Biochem Biophys. 2010;500(1):82–91.
  • Domínguez L, Sosa-Peinado A, Hansberg W. How catalase recognizes H2O2 in a sea of water. Proteins. 2014;82(1):45–56.
  • Flohé L. The impact of thiol peroxidases on redox regulation. Free Radic Res. 2016;50(2):126–142.
  • Brigelius-Flohé R, Maiorino M. Glutathione peroxidases. Biochim Biophys Acta. 2013;1830(5):3289–3303.
  • Wang L, Zhang L, Niu Y, et al. Glutathione peroxidase 7 utilizes hydrogen peroxide generated by Ero1α to promote oxidative protein folding. Antioxid Redox Signal. 2014;20(4):545–556.
  • Ng CF, Schafer FQ, Buettner GR, et al. The rate of cellular hydrogen peroxide removal shows dependency on GSH: mathematical insight into in vivo H2O2 and GPx concentrations. Free Radic Res. 2007;41(11):1201–1211.
  • Flohé L. The fairytale of the GSSG/GSH redox potential. Biochim Biophys Acta. 2013;1830(5):3139–3142.
  • Rhee SG. Overview on peroxiredoxin. Mol Cells. 2016;39(1):1–5.
  • Claiborne A, Yeh JI, Mallett TC, et al. Protein-sulfenic acids: diverse roles for an unlikely player in enzyme catalysis and redox regulation. Biochemistry. 1999;38(47):15407–15416.
  • Netto LE, Antunes F. The roles of peroxiredoxin and thioredoxin in hydrogen peroxide sensing and in signal transduction. Mol Cells. 2016;39(1):65–71.
  • Yang KS, Kang SW, Woo HA, et al. Inactivation of human peroxiredoxin I during catalysis as the result of the oxidation of the catalytic site cysteine to cysteine-sulfinic acid. J Biol Chem. 2002;277(41):38029–38036.
  • Noichri Y, Palais G, Ruby V, et al. In vivo parameters influencing 2-Cys Prx oligomerization: the role of enzyme sulfinylation. Redox Biol. 2015;6:326–333.
  • Lowther WT, Haynes AC. Reduction of cysteine sulfinic acid in eukaryotic, typical 2-Cys peroxiredoxins by sulfiredoxin. Antioxid Redox Signal. 2011;15(1):99–109.
  • Rhee SG, Jeong W, Chang TS, et al. Sulfiredoxin, the cysteine sulfinic acid reductase specific to 2-Cys peroxiredoxin: its discovery, mechanism of action, and biological significance. Kidney Int Suppl. 2007;106(106):S3–SS8.
  • Lee S, Kim SM, Lee RT. Thioredoxin and thioredoxin target proteins: from molecular mechanisms to functional significance. Antioxid Redox Signal. 2013;18(10):1165–1207.
  • Saccoccia F, Angelucci F, Boumis G, et al. Thioredoxin reductase and its inhibitors. Curr Protein Pept Sci. 2014;15(6):621–646.
  • Nimse SB, Pal D. Free radicals, natural antioxidants, and their reaction mechanisms. RSC Adv. 2015;5(35):27986–28006.
  • Hacişevki A. An overview of ascorbic acid biochemistry. J Fac Pharm (Ankara). 2009;38:233–255.
  • Lee YC, Huang HY, Chang CJ, et al. Mitochondrial GLUT10 facilitates dehydroascorbic acid import and protects cells against oxidative stress: mechanistic insight into arterial tortuosity syndrome. Hum Mol Genet. 2010;19(19):3721–3733.
  • May JM, Huang J, Qu ZC. Macrophage uptake and recycling of ascorbic acid: response to activation by lipopolysaccharides. Free Radic Biol Med. 2005;39(11):1449–1459.
  • Oudemans-van Straaten HM, Spoelstra-de Man AM, de Waard MC. Vitamin C revisited. Crit Care. 2014;18(4):460.
  • Huang J, May JM. Ascorbic acid protects SH-SY5Y neuroblastoma cells from apoptosis and death induced by beta-amyloid. Brain Res. 2006;1097(1):52–58.
  • Chakraborthy A, Ramani P, Sherlin HJ, et al. Antioxidant and pro-oxidant activity of vitamin C in oral environment. Indian J Dent Res. 2014;25(4):499–504.
  • Patel VS, Sampat V, Espey MG, et al. Ascorbic acid attenuates hyperoxia-compromised host defense against pulmonary bacterial infection. Am J Respir Cell Mol Biol. 2016;55(4):511–520.
  • Rochette L, Ghibu S, Richard C, et al. Direct and indirect antioxidant properties of α-lipoic acid and therapeutic potential. Mol Nutr Food Res. 2013;57(1):114–125.
  • Rochette L, Ghibu S, Muresan A, et al. Alpha-lipoic acid: molecular mechanisms and therapeutic potential in diabetes. Can J Physiol Pharmacol. 2015;93(12):1021–1027.
  • Maglione E, Marrese C, Migliaro E, et al. Increasing bioavailability of (R)-alpha-lipoic acid to boost antioxidant activity in the treatment of neuropathic pain. Acta Biol Med. 2015;86(3):226–233.
  • Traber MG, Atkinson J. Vitamin E, antioxidant and nothing more. Free Radic Biol Med. 2007;43(1):4–15.
  • Engin KN. Alpha-tocopherol: looking beyond an antioxidant. Mol Vis. 2009;15:855–860.
  • Kwak JY, Takeshige K, Cheung BS, et al. Bilirubin inhibits the activation of superoxide-producing NADPH oxidase in a neutrophil cell-free system. Biochim Biophys Acta. 1991;1076(3):369–373.
  • Abraham NG, Kappas A. Pharmacological and clinical aspects of heme oxygenase. Pharmacol Rev. 2008;60(1):79–127.
  • Chau LY. Heme oxygenase-1: emerging target of cancer therapy. J Biomed Sci. 2015;22:22.
  • Valko M, Rhodes CJ, Moncol J, et al. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact. 2006;160(1):1–40.
  • Berlett BS, Stadtman ER. Protein oxidation in aging, disease, and oxidative stress. J Biol Chem. 1997;272(33):20313–20316.
  • Bubb KJ, Birgisdottir AB, Tang O, et al. Redox modification of caveolar proteins in the cardiovascular system – role in cellular signaling and disease. Free Radic Biol Med. 2017;109:61–74.
  • Navarro-Yepes J, Burns M, Anandhan A, et al. Oxidative stress, redox signaling, and autophagy: cell death versus survival. Antioxid Redox Signal. 2014;21(1):66–85.
  • Waris G, Ahsan H. Reactive oxygen species: role in the development of cancer and various chronic conditions. J Carcinog. 2006;5:14.
  • Dayem AA, Choi HY, Kim JH, et al. Role of oxidative stress in stem, cancer, and cancer stem cells. Cancers (Basel). 2010;2(2):859–884.
  • Schmidt HH, Stocker R, Vollbracht C, et al. Antioxidants in translational medicine. Antioxid Redox Signal. 2015;23(14):1130–1143.
  • Ahmad KA, Yuan Yuan D, Nawaz W, et al. Antioxidant therapy for management of oxidative stress induced hypertension. Free Radic Res. 2017;51(4):428–438.
  • De Oliveira MR. Vitamin A and retinoids as mitochondrial toxicants. Oxid Med Cell Longev. 2015;2015:140267.
  • Dakin HD. The oxidation of amino-acids with the production of substances of biological importance. J Biol Chem. 1906;1:171–177.
  • De Duve C, Baudhuin P. Peroxisomes (microbodies and related particles). Physiol Rev. 1966;46(2):323–357.
  • Leighton F, Poole B, Lazarow PB, et al. The synthesis and turnover of rat liver peroxisomes. I. Fractionation of peroxisome proteins. J Cell Biol. 1969;41(2):521–535.
  • Jayko ME, Garrison WM. Formation of C = O bonds in the radiation-induced oxidation of protein in aqueous systems. Nature. 1958;181(4606):413–414.
  • Bennett W, Garrison WM. Production of amide groups and ammonia in the radiolysis of aqueous solutions of proteins. Nature. 1959;183(4665):889.
  • Swallow AJ, Velandia JA. Oxygen effect as an explanation of differences between the action of alpha-particles and x- or gamma-rays on aqueous solutions of amino-acids and proteins. Nature. 1962;195:798–800.
  • Schaich KM, Karel M. Free radical reactions of peroxidizing lipids with amino acids and proteins: an ESR study. Lipids. 1976;11(5):392–400.
  • Becker D, Swarts S, Champagne M, et al. An ESR investigation of the reactions of glutathione, cysteine and penicillamine thiyl radicals: competitive formation of RSO., R., RSSR-., and RSS(.). Int J Radiat Biol Relat Stud Phys Chem Med. 1988;53(5):767–786.
  • Davies MJ, Fu S, Dean RT. Protein hydroperoxides can give rise to reactive free radicals. Biochem J. 1995;305(2):643–649.
  • Davies MJ. Protein and peptide alkoxyl radicals can give rise to C-terminal decarboxylation and backbone cleavage. Arch Biochem Biophys. 1996;336(1):163–172.
  • Davies MJ. Reactive species formed on proteins exposed to singlet oxygen. Photochem Photobiol Sci. 2004;3(1):17–25.
  • Wright A, Hawkins CL, Davies MJ. Photo-oxidation of cells generates long-lived intracellular protein peroxides. Free Radic Biol Med. 2003;34(6):637–647.
  • Luxford C, Morin B, Dean RT, et al. Histone H1- and other protein- and amino acid-hydroperoxides can give rise to free radicals which oxidize DNA. Biochem J. 1999;344(1):125–134.
  • Du J, Gebicki JM. Proteins are major initial cell targets of hydroxyl free radicals. Int J Biochem Cell Biol. 2004;36(11):2334–2343.
  • Davies MJ. Protein oxidation and peroxidation. Biochem J. 2016;473(7):805–825.
  • Tien M, Berlett BS, Levine RL, et al. Peroxynitrite-mediated modification of proteins at physiological carbon dioxide concentration: pH dependence of carbonyl formation, tyrosine nitration, and methionine oxidation. Proc Natl Acad Sci USA. 1999;96(14):7809–7814.
  • Daiber A, Daub S, Bachschmid M, et al. Protein tyrosine nitration and thiol oxidation by peroxynitrite – strategies to prevent these oxidative modifications. Int J Mol Sci. 2013;14(4):7542–7570.
  • Go YM, Chandler JD, Jones DP. The cysteine proteome. Free Radic Biol Med. 2015;84:227–245.
  • Torres-Cuevas I, Kuligowski J, Cárcel M, et al. Protein-bound tyrosine oxidation, nitration and chlorination by-products assessed by ultraperformance liquid chromatography coupled to tandem mass spectrometry. Anal Chim Acta. 2016;913:104–110.
  • Qu Z, Greenlief CM, Gu Z. Quantitative proteomic approaches for analysis of protein S-nitrosylation. J Proteome Res. 2016;15(1):1–14.
  • Chondrogianni N, Petropoulos I, Grimm S, et al. Protein damage, repair and proteolysis. Mol Aspects Med. 2014;35:1–71.
  • Archakov AI, Mokhosoev IM. Modification of proteins by active oxygen and their degradation. Biokhimiia. 1989;54(2):179–186.
  • Winterbourn CC, Hampton MB. Thiol chemistry and specificity in redox signaling. Free Radic Biol Med. 2008;45(5):549–561.
  • Maulucci G, Bačić G, Bridal L, et al. Imaging reactive oxygen species-induced modifications in living systems. Antioxid Redox Signal. 2016;24(16):939–958.
  • Forman HJ, Davies MJ, Krämer AC, et al. Protein cysteine oxidation in redox signaling: caveats on sulfenic acid detection and quantification. Arch Biochem Biophys. 2017;617:26–37.
  • Saladino J, Liu M, Live D, et al. Aliphatic peptidyl hydroperoxides as a source of secondary oxidation in hydroxyl radical protein footprinting. J Am Soc Mass Spectrom. 2009;20(6):1123–1126.
  • Headlam HA, Davies MJ. Beta-scission of side-chain alkoxyl radicals on peptides and proteins results in the loss of side-chains as aldehydes and ketones. Free Radic Biol Med. 2002;32(11):1171–1184.
  • Headlam HA, Davies MJ. Markers of protein oxidation: different oxidants give rise to variable yields of bound and released carbonyl products. Free Radic Biol Med. 2004;36(9):1175–1184.
  • Morgan PE, Pattison DI, Davies MJ. Quantification of hydroxyl radical-derived oxidation products in peptides containing glycine, alanine, valine, and proline. Free Radic Biol Med. 2012;52(2):328–339.
  • Agon VV, Bubb WA, Wright A, et al. Sensitizer-mediated photooxidation of histidine residues: evidence for the formation of reactive side-chain peroxides. Free Radic Biol Med. 2006;40(4):698–710.
  • Perrin D, Koppenol WH. The quantitative oxidation of methionine to methionine sulfoxide by peroxynitrite. Arch Biochem Biophys. 2000;377(2):266–272.
  • Trujillo M, Alvarez B, Radi R. One- and two-electron oxidation of thiols: mechanisms, kinetics and biological fates. Free Radic Res. 2016;50(2):150–171.
  • Davies MJ. Myeloperoxidase-derived oxidation: mechanisms of biological damage and its prevention. J Clin Biochem Nutr. 2011;48(1):8–19.
  • Rayner BS, Love DT, Hawkins CL. Comparative reactivity of myeloperoxidase-derived oxidants with mammalian cells. Free Radic Biol Med. 2014;71:240–255.
  • Davies MJ, Hawkins CL. Hypochlorite-induced oxidation of thiols: formation of thiyl radicals and the role of sulfenyl chlorides as intermediates. Free Radic Res. 2000;33(6):719–729.
  • Klomsiri C, Karplus PA, Poole LB. Cysteine-based redox switches in enzymes. Antioxid Redox Signal. 2011;14(6):1065–1077.
  • Kim HJ, Ha S, Lee HY, et al. ROSics: chemistry and proteomics of cysteine modifications in redox biology. Mass Spectrom Rev. 2015;34(2):184–208.
  • Carballal S, Radi R, Kirk MC, et al. Sulfenic acid formation in human serum albumin by hydrogen peroxide and peroxynitrite. Biochemistry. 2003;42(33):9906–9914.
  • Gupta V, Carroll KS. Sulfenic acid chemistry, detection and cellular lifetime. Biochim Biophys Acta. 2014;1840(2):847–875.
  • Winterbourn CC, Peskin AV. Kinetic approaches to measuring peroxiredoxin reactivity. Mol Cells. 2016;39(1):26–30.
  • Perkins A, Parsonage D, Nelson KJ, et al. Peroxiredoxin catalysis at atomic resolution. Structure. 2016;24(10):1668–1678.
  • DeMaster EG, Quast BJ, Redfern B, et al. Reaction of nitric oxide with the free sulfhydryl group of human serum albumin yields a sulfenic acid and nitrous oxide. Biochemistry. 1995;34(36):11494–11499.
  • Bonanata J, Turell L, Antmann L, et al. The thiol of human serum albumin: acidity, microenvironment and mechanistic insights on its oxidation to sulfenic acid. Free Radic Biol Med. 2017;108:952–962.
  • Townsend DM, Lushchak VI, Cooper AJ. A comparison of reversible versus irreversible protein glutathionylation. Adv Cancer Res. 2014;122:177–198.
  • Crump KE, Juneau DG, Poole LB, et al. The reversible formation of cysteine sulfenic acid promotes B-cell activation and proliferation. Eur J Immunol. 2012;42(8):2152–2164.
  • Rehder DS, Borges CR. Cysteine sulfenic acid as an intermediate in disulfide bond formation and nonenzymatic protein folding. Biochemistry. 2010;49(35):7748–7755.
  • Patil NA, Tailhades J, Hughes RA, et al. Cellular disulfide bond formation in bioactive peptides and proteins. Int J Mol Sci. 2015;16(1):1791–1805.
  • Bechtel TJ, Weerapana E. From structure to redox: the diverse functional roles of disulfides and implications in disease. Proteomics. 2017;17(6).
  • Stipanuk MH, Ueki I, Dominy JE, et al. Cysteine dioxygenase: a robust system for regulation of cellular cysteine levels. Amino Acids. 2009;37(1):55–63.
  • Driggers CM, Kean KM, Hirschberger LL, et al. Structure-based insights into the role of the Cys–Tyr crosslink and inhibitor recognition by mammalian cysteine dioxygenase. J Mol Biol. 2016;428(20):3999–4012.
  • Fujiwara N, Nakano M, Kato S, et al. Oxidative modification to cysteine sulfonic acid of Cys111 in human copper–zinc superoxide dismutase. J Biol Chem. 2007;282(49):35933–35944.
  • Wang Y, Vivekananda S, Men L, et al. Fragmentation of protonated ions of peptides containing cysteine, cysteine sulfinic acid, and cysteine sulfonic acid. J Am Soc Mass Spectrom. 2004;15(5):697–702.
  • Jeong J, Jung Y, Na S, et al. Novel oxidative modifications in redox-active cysteine residues. Mol Cell Proteomics. 2011;10(3):M110.000513.
  • Pryor WA, Jin X, Squadrito GL. One- and two-electron oxidations of methionine by peroxynitrite. Proc Natl Acad Sci USA. 1994;91(23):11173–11177.
  • Torreggiani A, Barata-Vallejo S, Chatgilialoglu C. Combined Raman and IR spectroscopic study on the radical-based modifications of methionine. Anal Bioanal Chem. 2011;401(4):1231–1239.
  • Kim G, Weiss SJ, Levine RL. Methionine oxidation and reduction in proteins. Biochim Biophys Acta. 2014;1840(2):901–905.
  • Peskin AV, Winterbourn CC. Kinetics of the reactions of hypochlorous acid and amino acid chloramines with thiols, methionine, and ascorbate. Free Radic Biol Med. 2001;30(5):572–579.
  • Liang X, Kaya A, Zhang Y, et al. Characterization of methionine oxidation and methionine sulfoxide reduction using methionine-rich cysteine-free proteins. BMC Biochem. 2012;13:21.
  • Xiong Y, Uys JD, Tew KD, et al. S-glutathionylation: from molecular mechanisms to health outcomes. Antioxid Redox Signal. 2011;15(1):233–270.
  • Jones JT, Qian X, van der Velden JL, et al. Glutathione S-transferase pi modulates NF-κB activation and pro-inflammatory responses in lung epithelial cells. Redox Biol. 2016;8:375–382.
  • Fernandes AP, Holmgren A. Glutaredoxins: glutathione-dependent redox enzymes with functions far beyond a simple thioredoxin backup system. Antioxid Redox Signal. 2004;6(1):63–74.
  • Foster MW, Liu L, Zeng M, et al. A genetic analysis of nitrosative stress. Biochemistry. 2009;48(4):792–799.
  • Broniowska KA, Diers AR, Hogg N. S-nitrosoglutathione. Biochim Biophys Acta. 2013;1830(5):3173–3181.
  • Smith BC, Marletta MA. Mechanisms of S-nitrosothiol formation and selectivity in nitric oxide signaling. Curr Opin Chem Biol. 2012;16(5–6):498–506.
  • Liu L, Hausladen A, Zeng M, et al. A metabolic enzyme for S-nitrosothiol conserved from bacteria to humans. Nature. 2001;410(6827):490–494.
  • Kelleher ZT, Sha Y, Foster MW, et al. Thioredoxin-mediated denitrosylation regulates cytokine-induced nuclear factor κB (NF-κB) activation. J Biol Chem. 2014;289(5):3066–3072.
  • Viner RI, Williams TD, Schöneich C. Peroxynitrite modification of protein thiols: oxidation, nitrosylation, and S-glutathiolation of functionally important cysteine residue(s) in the sarcoplasmic reticulum Ca-ATPase. Biochemistry. 1999;38(38):12408–12415.
  • Viner RI, Williams TD, Schöneich C. Nitric oxide-dependent modification of the sarcoplasmic reticulum Ca-ATPase: localization of cysteine target sites. Free Radic Biol Med. 2000;29(6):489–496.
  • Doulias PT, Greene JL, Greco TM, et al. Structural profiling of endogenous S-nitrosocysteine residues reveals unique features that accommodate diverse mechanisms for protein S-nitrosylation. Proc Natl Acad Sci U S A. 2010;107(39):16958–16963.
  • Doulias PT, Tenopoulou M, Raju K, et al. Site specific identification of endogenous S-nitrosocysteine proteomes. J Proteom. 2013;92:195–203.
  • Anand P, Hausladen A, Wang YJ, et al. Identification of S-nitroso-CoA reductases that regulate protein S-nitrosylation. Proc Natl Acad Sci USA. 2014;111(52):18572–18577.
  • Lee TY, Chen YJ, Lu CT, et al. dbSNO: a database of cysteine S-nitrosylation. Bioinformatics. 2012;28(17):2293–2295.
  • Chen YJ, Lu CT, Lee TY, et al. dbGSH: a database of S-glutathionylation. Bioinformatics. 2014;30(16):2386–2388.
  • Paul BD, Snyder SH. H2S: a novel gasotransmitter that signals by sulfhydration. Trends Biochem Sci. 2015;40(11):687–700.
  • Zhang D, Du J, Tang C, et al. H2S-induced sulfhydration: biological function and detection methodology. Front Pharmacol. 2017;8:608.
  • Bianco CL, Chavez TA, Sosa V, et al. The chemical biology of the persulfide (RSSH)/perthiyl (RSS·) redox couple and possible role in biological redox signaling. Free Radic Biol Med. 2016;101:20–31.
  • Kasamatsu S, Nishimura A, Morita M, et al. Redox signaling regulated by cysteine persulfide and protein polysulfidation. Molecules. 2016;21(12).
  • Dóka É, Pader I, Biró A, et al. A novel persulfide detection method reveals protein persulfide- and polysulfide-reducing functions of thioredoxin and glutathione systems. Sci Adv. 2016;2(1):e1500968.
  • Wedmann R, Onderka C, Wei S, et al. Improved tag-switch method reveals that thioredoxin acts as depersulfidase and controls the intracellular levels of protein persulfidation. Chem Sci. 2016;7(5):3414–3426.
  • Wright A, Bubb WA, Hawkins CL, et al. Singlet oxygen-mediated protein oxidation: evidence for the formation of reactive side chain peroxides on tyrosine residues. Photochem Photobiol. 2002;76(1):35–46.
  • Houée-Lévin C, Bobrowski K, Horakova L, et al. Exploring oxidative modifications of tyrosine: an update on mechanisms of formation, advances in analysis and biological consequences. Free Radic Res. 2015;49(4):347–373.
  • Annibal A, Colombo G, Milzani A, et al. Identification of dityrosine cross-linked sites in oxidized human serum albumin. J Chromatogr B Analyt Technol Biomed Life Sci. 2016;1019:147–155.
  • Schöneich C, Sharov VS. Mass spectrometry of protein modifications by reactive oxygen and nitrogen species. Free Radic Biol Med. 2006;41(10):1507–1520.
  • Mukherjee S, Kapp EA, Lothian A, et al. Characterization and identification of dityrosine cross-linked peptides using tandem mass spectrometry. Anal Chem. 2017;89(11):6136–6145.
  • Gracanin M, Lam MA, Morgan PE, et al. Amino acid, peptide, and protein hydroperoxides and their decomposition products modify the activity of the 26S proteasome. Free Radic Biol Med. 2011;50(2):389–399.
  • Nuriel T, Hansler A, Gross SS. Protein nitrotryptophan: formation, significance and identification. J Proteom. 2011;74(11):2300–2312.
  • Batthyány C, Bartesaghi S, Mastrogiovanni M, et al. Tyrosine-nitrated proteins: proteomic and bioanalytical aspects. Antioxid Redox Signal. 2017;26(7):313–328.
  • Suzuki T, Mower HF, Friesen MD, et al. Nitration and nitrosation of N-acetyl-L-tryptophan and tryptophan residues in proteins by various reactive nitrogen species. Free Radic Biol Med. 2004;37(5):671–681.
  • Mokhosoev IM, Kuznetsova GP, Al’terman MA, et al. Inactivation of sodium dithionite reduced cytochrome. Biokhimiia. 1987;52(10):1649–1658.
  • Daiber A, Bachschmid M, Beckman JS, et al. The impact of metal catalysis on protein tyrosine nitration by peroxynitrite. Biochem Biophys Res Commun. 2004;317(3):873–881.
  • Daiber A, Schöneich C, Schmidt P, et al. Autocatalytic nitration of P450CAM by peroxynitrite. J Inorg Biochem. 2000;81(3):213–220.
  • Daiber A, Herold S, Schöneich C, et al. Nitration and inactivation of cytochrome P450BM-3 by peroxynitrite. Stopped-flow measurements prove ferryl intermediates. Eur J Biochem. 2000;267(23):6729–6739.
  • Viner RI, Ferrington DA, Williams TD, et al. Protein modification during biological aging: selective tyrosine nitration of the SERCA2a isoform of the sarcoplasmic reticulum Ca2+-ATPase in skeletal muscle. Biochem J. 1999;340(3):657–669.
  • Degendorfer G, Chuang CY, Kawasaki H, et al. Peroxynitrite-mediated oxidation of plasma fibronectin. Free Radic Biol Med. 2016;97:602–615.
  • Degendorfer G, Chuang CY, Hammer A, et al. Peroxynitrous acid induces structural and functional modifications to basement membranes and its key component, laminin. Free Radic Biol Med. 2015;89:721–733.
  • Burdon RH, Rice-Evans C. Free radicals and the regulation of mammalian cell proliferation. Free Radic Res Commun. 1989;6(6):345–358.
  • Burdon RH, Gill V, Alliangana D. Hydrogen peroxide in relation to proliferation and apoptosis in BHK-21 hamster fibroblasts. Free Radic Res. 1996;24(2):81–93.
  • Davies KJ, Goldberg AL. Proteins damaged by oxygen radicals are rapidly degraded in extracts of red blood cells. J Biol Chem. 1987;262(17):8227–8234.
  • Costa V, Quintanilha A, Moradas-Ferreira P. Protein oxidation, repair mechanisms and proteolysis in Saccharomyces cerevisiae. IUBMB Life. 2007;59(4–5):293–298.
  • Balch WE, Morimoto RI, Dillin A, et al. Adapting proteostasis for disease intervention. Science. 2008;319(5865):916–919.
  • Roth DM, Balch WE. Modeling general proteostasis: proteome balance in health and disease. Curr Opin Cell Biol. 2011;23(2):126–134.
  • Labbadia J, Morimoto RI. The biology of proteostasis in aging and disease. Annu Rev Biochem. 2015;84:435–464.
  • Ghezzi P, Chan P. Redox proteomics applied to the thiol secretome. Antioxid Redox Signal. 2017;26(7):299–312.
  • Zhang J, Wang X, Vikash V, et al. ROS and ROS-mediated cellular signaling. Oxid Med Cell Longev. 2016;2016:4350965.
  • Thannickal VJ, Fanburg BL. Activation of an H2O2-generating NADH oxidase in human lung fibroblasts by transforming growth factor beta 1. J Biol Chem. 1995;270(51):30334–30338.
  • Shibanuma M, Kuroki T, Nose K. Stimulation by hydrogen peroxide of DNA synthesis, competence family gene expression and phosphorylation of a specific protein in quiescent Balb/3T3 cells. Oncogene. 1990;5(7):1025–1032.
  • Kuznetsov AV, Smigelskaite J, Doblander C, et al. Survival signaling by C-RAF: mitochondrial reactive oxygen species and Ca2+ are critical targets. Mol Cell Biol. 2008;28(7):2304–2313.
  • Wenzel P, Kossmann S, Münzel T, et al. Redox regulation of cardiovascular inflammation – immunomodulatory function of mitochondrial and Nox-derived reactive oxygen and nitrogen species. Free Radic Biol Med. 2017;109:48–60.
  • Blaser H, Dostert C, Mak TW, et al. TNF and ROS crosstalk in inflammation. Trends Cell Biol. 2016;26(4):249–261.
  • Peshavariya HM, Chan EC, Liu GS, et al. Transforming growth factor-β1 requires NADPH oxidase 4 for angiogenesis in vitro and in vivo. J Cell Mol Med. 2014;18(6):1172–1183.
  • Joo JH, Oh H, Kim M, et al. NADPH oxidase 1 activity and ROS generation are regulated by Grb2/Cbl-mediated proteasomal degradation of NoxO1 in colon cancer cells. Cancer Res. 2016;76(4):855–865.
  • Moldogazieva NT, Terentiev AA. Alpha-fetoprotein and growth factors. Structure–function relationships and analogies. Usp Biol Chim (Rus.). 2006;46:99–148.
  • Heppner DE, Hristova M, Dustin CM, et al. The NADPH oxidases DUOX1 and NOX2 play distinct roles in redox regulation of epidermal growth factor receptor signaling. J Biol Chem. 2016;291(44):23282–23293.
  • Habibovic A, Hristova M, Heppner DE, et al. DUOX1 mediates persistent epithelial EGFR activation, mucous cell metaplasia, and airway remodeling during allergic asthma. JCI Insight. 2016;1(18):e88811.
  • Zhang H, Wang ZW, Wu HB, et al. Transforming growth factor-β1 induces matrix metalloproteinase-9 expression in rat vascular smooth muscle cells via ROS-dependent ERK-NF-κB pathways. Mol Cell Biochem. 2013;375(1–2):11–21.
  • Yang B, Li W, Zheng Q, et al. Transforming growth factor β-activated kinase 1 negatively regulates interleukin-1α-induced stromal-derived factor-1 expression in vascular smooth muscle cells. Biochem Biophys Res Commun. 2015;463(1–2):130–136.
  • Luanpitpong S, Chanvorachote P, Stehlik C, et al. Regulation of apoptosis by Bcl-2 cysteine oxidation in human lung epithelial cells. Mol Biol Cell. 2013;24(6):858–869.
  • Liu J, Chang F, Li F, et al. Palmitate promotes autophagy and apoptosis through ROS-dependent JNK and p38 MAPK. Biochem Biophys Res Commun. 2015;463(3):262–267.
  • Dixit D, Ghildiyal R, Anto NP, et al. Chaetocin-induced ROS-mediated apoptosis involves ATM-YAP1 axis and JNK-dependent inhibition of glucose metabolism. Cell Death Dis. 2014;5:e1212.
  • Deng L, Chen M, Tanaka M, et al. HCV upregulates Bim through the ROS/JNK signalling pathway, leading to Bax-mediated apoptosis. J Gen Virol. 2015;96(9):2670–2683.
  • Kylarova S, Kosek D, Petrvalska O, et al. Cysteine residues mediate high-affinity binding of thioredoxin to ASK1. FEBS J. 2016;283(20):3821–3838.
  • Katagiri K, Matsuzawa A, Ichijo H. Regulation of apoptosis signal-regulating kinase 1 in redox signaling. Methods Enzymol. 2010;474:277–288.
  • Kwon J, Lee SR, Yang KS, et al. Reversible oxidation and inactivation of the tumor suppressor PTEN in cells stimulated with peptide growth factors. Proc Natl Acad Sci U S A. 2004;101(47):16419–16424.
  • Hers I, Vincent EE, Tavaré JM. Akt signalling in health and disease. Cell Signal. 2011;23(10):1515–1527.
  • Youreva V, Srivastava AK. Early growth response protein-1 expression by insulin-like growth factor-1 requires ROS-dependent activation of ERK1/2 and PKB pathways in vascular smooth muscle cells. J Cell Biochem. 2016;117(1):152–162.
  • Usatyuk PV, Fu P, Mohan V, et al. Role of c-Met/phosphatidylinositol 3-kinase (PI3K)/Akt signaling in hepatocyte growth factor (HGF)-mediated lamellipodia formation, reactive oxygen species (ROS) generation, and motility of lung endothelial cells. J Biol Chem. 2014;289(19):13476–13491.
  • Gu YT, Xue YX, Wang YF, et al. Role of ROS/RhoA/PI3K/PKB signaling in NS1619-mediated blood-tumor barrier permeability increase. J Mol Neurosci. 2012;48(1):302–312.
  • Gu YT, Xue YX, Wang YF, et al. Minoxidil sulfate induced the increase in blood–brain tumor barrier permeability through ROS/RhoA/PI3K/PKB signaling pathway. Neuropharmacology. 2013;75:407–415.
  • Murata H, Ihara Y, Nakamura H, et al. Glutaredoxin exerts an antiapoptotic effect by regulating the redox state of Akt. J Biol Chem. 2003;278(50):50226–50233.
  • Carnero A, Blanco-Aparicio C, Renner O, et al. The PTEN/PI3K/AKT signalling pathway in cancer, therapeutic implications. Curr Cancer Drug Targets. 2008;8(3):187–198.
  • Connor KM, Subbaram S, Regan KJ, et al. Mitochondrial H2O2 regulates the angiogenic phenotype via PTEN oxidation. J Biol Chem. 2005;280(17):16916–16924.
  • Dessy C, Feron O. Pathophysiological roles of nitric oxide: in the heart and the coronary vasculature. CMCAIAA. 2004;3(3):207–216.
  • Gileadi O. Structures of soluble guanylate cyclase: implications for regulatory mechanisms and drug development. Biochem Soc Trans. 2014;42(1):108–113.
  • Montfort WR, Wales JA, Weichsel A. Structure and activation of soluble guanylyl cyclase, the nitric oxide sensor. Antioxid Redox Signal. 2017;26(3):107–121.
  • Schlossmann J, Feil R, Hofmann F. Insights into cGMP signalling derived from cGMP kinase knockout mice. Front Biosci. 2005;10:1279–1289.
  • Stone JR, Sands RH, Dunham WR, et al. Electron paramagnetic resonance spectral evidence for the formation of a pentacoordinate nitrosyl-heme complex on soluble guanylate cyclase. Biochem Biophys Res Commun. 1995;207(2):572–577.
  • Stone JR, Marletta MA. Synergistic activation of soluble guanylate cyclase by YC-1 and carbon monoxide: implications for the role of cleavage of the iron-histidine bond during activation by nitric oxide. Chem Biol. 1998;5(5):255–261.
  • Négrerie M, Bouzhir L, Martin JL, et al. Control of nitric oxide dynamics by guanylate cyclase in its activated state. J Biol Chem. 2001;276(50):46815–46821.
  • Anand P, Stamler JS. Enzymatic mechanisms regulating protein S-nitrosylation: implications in health and disease. J Mol Med (Berl). 2012;90(3):233–244.
  • Yang Z, Wang ZE, Doulias PT, et al. Lymphocyte development requires S-nitrosoglutathione reductase. J Immunol. 2010;185(11):6664–6669.
  • Aquilano K, Baldelli S, Ciriolo MR. Glutathione: new roles in redox signaling for an old antioxidant. Front Pharmacol. 2014;5:196.
  • Sengupta R, Holmgren A. Thioredoxin and glutaredoxin-mediated redox regulation of ribonucleotide reductase. World J Biol Chem. 2014;5(1):68–74.
  • Pader I, Sengupta R, Cebula M, et al. Thioredoxin-related protein of 14 kDa is an efficient L-cystine reductase and S-denitrosylase. Proc Natl Acad Sci U S A. 2014;111(19):6964–6969.
  • Jeong W, Chang TS, Boja ES, et al. Roles of TRP14, a thioredoxin-related protein in tumor necrosis factor-alpha signaling pathways. J Biol Chem. 2004;279(5):3151–3159.
  • Balafanova Z, Bolli R, Zhang J, et al. Nitric oxide (NO) induces nitration of protein kinase cepsilon (PKCepsilon), facilitating PKCepsilon translocation via enhanced PKCepsilon-RACK2 interactions: a novel mechanism of NO-triggered activation of PKCepsilon. J Biol Chem. 2002;277(17):15021–15027.
  • Elsasser TH, Li CJ, Caperna TJ, et al. Growth Hormone (GH)-associated nitration of Janus kinase-2 at the 1007Y-1008Y epitope impedes phosphorylation at this site: mechanism for and impact of a GH, AKT, and nitric oxide synthase axis on GH signal transduction. Endocrinology. 2007;148(8):3792–3802.
  • Yakovlev VA, Bayden AS, Graves PR, et al. Nitration of the tumor suppressor protein p53 at tyrosine 327 promotes p53 oligomerization and activation. Biochemistry. 2010;49(25):5331–5339.
  • Marinho HS, Real C, Cyrne L, et al. Hydrogen peroxide sensing, signaling and regulation of transcription factors. Redox Biol. 2014;2:535–562.
  • Reuter S, Gupta SC, Chaturvedi MM, et al. Oxidative stress, inflammation, and cancer: how are they linked? Free Radic Biol Med. 2010;49(11):1603–1616.
  • Park JS, Oh SY, Lee DH, et al. p62/SQSTM1 is required for the protection against endoplasmic reticulum stress-induced apoptotic cell death. Free Radic Res. 2016;50(12):1408–1421.
  • Dinkova-Kostova AT, Kazantsev AG. Activation of Nrf2 signaling as a common treatment of neurodegenerative diseases. Neurodegener Dis Manag. 2017;7(2):97–100.
  • Harder B, Jiang T, Wu T, et al. Molecular mechanisms of Nrf2 regulation and how these influence chemical modulation for disease intervention. Biochem Soc Trans. 2015;43(4):680–686.
  • Indo HP, Hawkins CL, Nakanishi I, et al. Role of mitochondrial reactive oxygen species in the activation of cellular signals, molecules, and function. Handb Exp Pharmacol. 2017;240:439–456.
  • Zhang DD, Hannink M. Distinct cysteine residues in Keap1 are required for Keap1-dependent ubiquitination of Nrf2 and for stabilization of Nrf2 by chemopreventive agents and oxidative stress. Mol Cell Biol. 2003;23(22):8137–8151.
  • McMahon M, Lamont DJ, Beattie KA, et al. Keap1 perceives stress via three sensors for the endogenous signaling molecules nitric oxide, zinc, and alkenals. Proc Natl Acad Sci U S A. 2010;107(44):18838–18843.
  • Zhang DD, Lo SC, Cross JV, et al. Keap1 is a redox-regulated substrate adaptor protein for a Cul3-dependent ubiquitin ligase complex. Mol Cell Biol. 2004;24(24):10941–10953.
  • Gao Y, Chu S, Shao Q, et al. Antioxidant activities of ginsenoside Rg1 against cisplatin-induced hepatic injury through Nrf2 signaling pathway in mice. Free Radic Res. 2017;51(1):1–13.
  • Refaat A, Pararasa C, Arif M, et al. Bardoxolone-methyl inhibits migration and metabolism in MCF7 cells. Free Radic Res. 2017;51(2):211–221.
  • Siomek A. NF-κB signaling pathway and free radical impact. Acta Biochim Pol. 2012;59(3):323–331.
  • Kratsovnik E, Bromberg Y, Sperling O, et al. Oxidative stress activates transcription factor NF-kB-mediated protective signaling in primary rat neuronal cultures. J Mol Neurosci. 2005;26(1):27–32.
  • Takada Y, Mukhopadhyay A, Kundu GC, et al. Hydrogen peroxide activates NF-κB through tyrosine phosphorylation of IκBα and serine phosphorylation of p65. Evidence for the involvement of IκBα kinase and Syk protein-tyrosine kinase. J Biol Chem. 2003;278(26):24233–24241.
  • Lisse TS, Rieger S. IKKα regulates human keratinocyte migration through surveillance of the redox environment. J Cell Sci. 2017;130(5):975–988.
  • Reynaert NL, van der Vliet A, Guala AS, et al. Dynamic redox control of NF-κB through glutaredoxin-regulated S-glutathionylation of inhibitory κB kinaseβ. Proc Natl Acad Sci USA. 2006;102:13086–13091.
  • Aesif SW, Kuipers I, van der Velden J, et al. Activation of the glutaredoxin-1 gene by nuclear factor κB enhances signaling. Free Radic Biol Med. 2011;51(6):1249–1257.
  • Nolin JD, Tully JE, Hoffman SM, et al. The glutaredoxin/S-glutathionylation axis regulates interleukin-17A-induced proinflammatory responses in lung epithelial cells in association with S-glutathionylation of nuclear factor κB family proteins. Free Radic Biol Med. 2014;73:143–153.
  • Yakovlev VA, Barani IJ, Rabender CS, et al. Tyrosine nitration of IkappaBalpha: a novel mechanism for NF-kappaB activation. Biochemistry. 2007;46(42):11671–11683.
  • Hayes P, Knaus UG. Balancing reactive oxygen species in the epigenome: NADPH oxidases as target and perpetrator. Antioxid Redox Signal. 2013;18(15):1937–1945.
  • Mikhed Y, Görlach A, Knaus UG, et al. Redox regulation of genome stability by effects on gene expression, epigenetic pathways and DNA damage/repair. Redox Biol. 2015;5:275–289.
  • Kietzmann T, Petry A, Shvetsova A, et al. The epigenetic landscape related to reactive oxygen species formation in the cardiovascular system. Br J Pharmacol. 2017;174(12):1533–1554.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.