371
Views
10
CrossRef citations to date
0
Altmetric
Original Article

Evaluation of mitochondrial redox status and energy metabolism of X-irradiated HeLa cells by LC/UV, LC/MS/MS and ESR

, , , , , , , & ORCID Icon show all
Pages 648-660 | Received 04 Jan 2018, Accepted 28 Mar 2018, Published online: 19 Apr 2018

References

  • Warburg O. On the origin of cancer cells. Science. 1956;123(3191):309–314.
  • Zong WX, Rabinowitz JD, White E. Mitochondria and cancer. Mol Cell. 2016;61(5):667–676.
  • Chen Y, McMillan-Ward E, Kong J, et al. Mitochondrial electron-transport-chain inhibitors of complexes I and II induce autophagic cell death mediated by reactive oxygen species. J Cell Sci. 2007;120(Pt 23):4155–4166.
  • Lu CL, Qin L, Liu HC, et al. Tumour cells switch to mitochondrial oxidative phosphorylation under radiation via mTOR-mediated hexokinase II inhibition--a Warburg-reversing effect. PLoS One. 2015;10(3):e0121046.
  • Yamamori T, Ike S, Bo T, et al. Inhibition of the mitochondrial fission protein dynamin-related protein 1 (Drp1) impairs mitochondrial fission and mitotic catastrophe after x-irradiation. Mol Biol Cell. 2015;26(25):4607–4617.
  • Yamamori T, Sasagawa T, Ichii O, et al. Analysis of the mechanism of radiation-induced upregulation of mitochondrial abundance in mouse fibroblasts. J Radiat Res. 2017;58(3):292–301.
  • Yasui H, Yamamoto K, Suzuki M, et al. Lipophilic triphenylphosphonium derivatives enhance radiation-induced cell killing via inhibition of mitochondrial energy metabolism in tumour cells. Cancer Lett. 2017;390:160–167.
  • Marrache S, Pathak RK, Dhar S. Detouring of cisplatin to access mitochondrial genome for overcoming resistance. Proc Natl Acad Sci. 2014;111(29):10444–10449.
  • Nishida N, Yasui H, Nagane M, et al. 3-methyl pyruvate enhances radiosensitivity through increasing mitochondria-derived reactive oxygen species in tumour cell lines. J Radiat Res. 2014;55(3):455–463.
  • Indo HP, Inanami O, Koumura T, et al. Roles of mitochondria-generated reactive oxygen species on X-ray-induced apoptosis in a human hepatocellular carcinoma cell line, HLE. Free Radic Res. 2012;46(8):1029–1043.
  • Motoori S, Majima HJ, Ebara M, et al. Overexpression of mitochondrial manganese superoxide dismutase protects against radiation-induced cell death in the human hepatocellular carcinoma cell line HLE. Cancer Res. 2001;61(14):5382–5388.
  • Chen Z, Wang B, Yu F, et al. The roles of mitochondria in radiation-induced autophagic cell death in cervical cancer cells. Tumour Biol. 2016;37(3):4083–4091.
  • Hosoki A, Yonekura S, Zhao QL, et al. Mitochondria-targeted superoxide dismutase (SOD2) regulates radiation resistance and radiation stress response in HeLa cells. J Radiat Res. 2012;53(1):58–71.
  • Hu S, Gao Y, Zhou H, et al. New insight into mitochondrial changes in vascular endothelial cells irradiated by gamma ray. Int J Radiat Biol. 2017;93(5):470–476.
  • Fetisova EK, Antoschina MM, Cherepanynets VD, et al. Radioprotective effects of mitochondria-targeted antioxidant SkQR1. Radiat Res. 2015;183(1):64–71.
  • Saenko Y, Cieslar-Pobuda A, Skonieczna M, et al. Changes of reactive oxygen and nitrogen species and mitochondrial functioning in human K562 and HL60 cells exposed to ionizing radiation. Radiat Res. 2013;180(4):360–366.
  • Kobashigawa S, Kashino G, Suzuki K, et al. Ionizing radiation-induced cell death is partly caused by increase of mitochondrial reactive oxygen species in normal human fibroblast cells. Radiat Res. 2015;183(4):455–464.
  • Kashino G, Tamari Y, Kumagai J, et al. Suppressive effect of ascorbic acid on the mutagenesis induced by the bystander effect through mitochondrial function. Free Radic Res. 2013;47(6–7):474–479.
  • Choi YM, Kim HK, Shim W, et al. Mechanism of cisplatin-induced cytotoxicity is correlated to impaired metabolism due to mitochondrial ROS Generation. PLoS One 2015;10(8):e0135083.
  • Sorokina IV, Denisenko TV, Imreh G, et al. Reactive oxygen species regulate a balance between mitotic catastrophe and apoptosis. Int J Biochem Cell Biol. 2016;81(A):133–136.
  • Yamamori T, Yasui H, Yamazumi M, et al. Ionizing radiation induces mitochondrial reactive oxygen species production accompanied by upregulation of mitochondrial electron transport chain function and mitochondrial content under control of the cell cycle checkpoint. Free Radic Biol Med. 2012;53(2):260–270.
  • Jahnke VE, Sabido O, Freyssenet D. Control of mitochondrial biogenesis, ROS level, and cytosolic Ca2+ concentration during the cell cycle and the onset of differentiation in L6E9 myoblasts. Am J Physiol Cell Physiol. 2009;296(5):C1185–C1194.
  • Schönfeld P, Wojtczak L. Fatty acids decrease mitochondrial generation of reactive oxygen species at the reverse electron transport but increase it at the forward transport. Biochim Biophys Acta. 2007;1767(8):1032–1040.
  • Lanciano P, Khalfaoui-Hassani B, Selamoglu N, et al. Molecular mechanisms of superoxide production by complex III: a bacterial versus human mitochondrial comparative case study. Biochim Biophys Acta. 2013;1827(11–12):1332–1339.
  • Yoshida T, Goto S, Kawakatsu M, et al. Mitochondrial dysfunction, a probable cause of persistent oxidative stress after exposure to ionizing radiation. Free Radic Res. 2012;46(2):147–153.
  • Ruuge EK, Ledenev AN, Lakomkin VL, et al. Free radical metabolites in myocardium during ischaemia and reperfusion. Am J Physiol. 1991;261(4 Suppl):81–86.
  • Elas M, Bielanska J, Pustelny K, et al. Detection of mitochondrial dysfunction by EPR technique in mouse model of dilated cardiomyopathy. Free Radic Biol Med. 2008;45(3):321–328.
  • Svistunenko DA, Davies N, Brealey D, et al. Mitochondrial dysfunction in patients with severe sepsis: an EPR interrogation of individual respiratory chain components. Biochim Biophys Acta. 2006;1757(4):262–272.
  • Burlaka AP, Ganusevich II, Gafurov MR, et al. Stomach cancer: interconnection between the redox state, activity of MMP-2, MMP-9 and stage of Tumourtumour growth. Cancer Microenviron. 2016;9(1):27–32.
  • Ledenev AN, Ruuge EK. Generation of superoxide radicals by mitochondria of the ischemic heart. Bull Exp Biol Med. 1985;100(3):1204–1206.
  • Pandian RP, Parinandi NL, Ilangovan G, et al. Novel particulate spin probe for targeted determination of oxygen in cells and tissues. Free Radic Biol Med. 2003;35(9):1138–1148.
  • Fujii H, Sakata K, Katsumata Y, et al. Tissue oxygenation in a murine SCC VII tumour after X-ray irradiation as determined by EPR spectroscopy. Radiother Oncol. 2008;86(3):354–360.
  • Labuschagne CF, van den Broek NJ, Postma P, et al. A protocol for quantifying lipid peroxidation in cellular systems by F2-isoprostane analysis. PLoS One. 2013;8(11):e80935.
  • Bornhorst J, Ebert F, Lohren H, et al. Effects of manganese and arsenic species on the level of energy related nucleotides in human cells. Metallomics. 2012;4(3):297–306.
  • Swartz HM. Cells and tissues. In: Swartz HD, Bolton JR, Borg DC, editors. Biological applications of electron spin resonance. Hoboken: John Wiley & Sons Inc; 1972. p. 155–196.
  • Segre AL, Benedetto A, Eremenko T, et al. An electron paramagnetic resonance study of free radicals in cells. Biochim Biophys Acta. 1977;497(2):615–621.
  • Jakubowska M, Sniegocka M, Podgórska E, et al. Pulmonary metastases of the A549-derived lung adenocarcinoma tumours growing in nude mice. A multiple case study. Acta Biochim Pol. 2013;60(3):323–330.
  • Emanuel NM. Kinetics and the free-radical mechanisms of tumour growth. Ann N Y Acad Sci. 1973;222:1010–1030.
  • Swartz HM. Effect of oxygen on freezing damage. II. Physical-chemical effects. Cryobiology. 1971;8(3):255–264.
  • De Jong AM, Albracht SP. Ubisemiquinones as obligatory intermediates in the electron transfer from NADH to ubiquinone. Eur J Biochem. 1994;222(3):975–982.
  • Rupp H, Rao KK, Hall DO, et al. Electron spin relaxation of iron–sulphur proteins studied by microwave power saturation. Biochim Biophys Acta. 1978;537(2):255–260.
  • Burbaev DS, Moroz IA, Kotlyar AB, et al. Ubisemiquinone in the NADH-ubiquinone reductase region of the mitochondrial respiratory chain. FEBS Lett. 1989;254(1–2):47–51.
  • Kotlyar AB, Sled VD, Burbaev DS, et al. Coupling site I and the rotenone-sensitive ubisemiquinone in tightly coupled submitochondrial particles. FEBS Lett. 1990;264(1):17–20.
  • Bartoletti-Stella A, Mariani E, Kurelac I, et al. Gamma rays induce a p53-independent mitochondrial biogenesis that is counter-regulated by HIF1alpha. Cell Death Dis. 2013;4:e663.
  • Derr RF, Zieve L. Adenylate energy charge: relation to guanylate energy charge and the adenylate kinase equilibrium constant. Biochem Biophys Res Commun. 1972;49(6):1385–1390.
  • Privalle LS, Burris RH. Adenine nucleotide levels in and nitrogen fixation by the cyanobacterium Anabaena sp. strain 7120. J Bacteriol. 1983;154(1):351–355.
  • Matsumoto SS, Raivio KO, Seegmiller JE. Adenine nucleotide degradation during energy depletion in human lymphoblasts. Adenosine accumulation and adenylate energy charge correlation. J Biol Chem. 1979;254(18):8956–8962.
  • Danielsen T, Skøyum R, Rofstad EK. Hypoxia-induced changes in radiation sensitivity in human melanoma cells: importance of oxygen-regulated proteins, adenylate energy charge and cell cycle distribution. Radiother Oncol. 1997;44(2):177–182.
  • Skøyum R, Eide K, Berg K, et al. Energy metabolism in human melanoma cells under hypoxic and acidic conditions in vitro. Br J Cancer. 1997;76(4):421–428.
  • Balestri F, Giannecchini M, Sgarrella F, et al. Purine and pyrimidine nucleosides preserve human astrocytoma cell adenylate energy charge under ischemic conditions. Neurochem Int. 2007;50(3):517–523.
  • Dong Y, Bey EA, Li LS, et al. Prostate cancer radiosensitization through poly(ADP-ribose) polymerase-1 hyperactivation. Cancer Res. 2010;70(20):8088–8096.
  • Ogura A, Oowada S, Kon Y, et al. Redox regulation in radiation-induced cytochrome c release from mitochondria of human lung carcinoma A549 cells. Cancer Lett. 2009;277(1):64–71.
  • Passos JF, Nelson G, Wang C, et al. Feedback between p21 and reactive oxygen production is necessary for cell senescence. Mol Syst Biol. 2010;6:347.
  • Fujibayashi Y, Waki A, Sakahara H, et al. Transient increase in glycolytic metabolismin cultured tumour cells immediately after exposure to ionizing radiation: from gene expressionto deoxyglucose uptake. Radiat Res. 1997;147(6):729–734.
  • Wang M, Keogh A, Treves S, et al. The metabolomic profile of gamma-irradiated human hepatoma and muscle cells reveals metabolic changes consistent with the Warburg effect. Peer J 2016;4:e1624.
  • Baker JE, Kalyanaraman B. Ischaemia-induced changes in myocardial paramagnetic metabolites: implications for intracellular oxy-radical generation. FEBS Lett. 1989;244(2):311–314.
  • Burlaka A, Selyuk M, Gafurov M, et al. Changes in mitochondrial functioning with electromagnetic radiation of ultra high frequency as revealed by electron paramagnetic resonance methods. Int J Radiat Biol. 2014;90(5):357–362.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.