326
Views
10
CrossRef citations to date
0
Altmetric
Review Article

Oxidative/nitrative stress in the pathogenesis of systemic sclerosis: are antioxidants beneficial?

, , , , , , & show all
Pages 1063-1082 | Received 07 Apr 2018, Accepted 15 Sep 2018, Published online: 13 Nov 2018

References

  • Pattanaik D, Brown M, Postlethwaite AE. Vascular involvement in systemic sclerosis (scleroderma). J Inflamm Res. 2011;4:105–125.
  • Bhattacharyya S, Wei J, Varga J. Understanding fibrosis in systemic sclerosis: shifting paradigms, emerging opportunities. Nat Rev Rheumatol. 2012;8:42–54.
  • Nourooz-Zadeh J. Key issues in F2-isoprostane analysis. Biochm Soc Trans. 2008;36:1060–1065.
  • Panieri E, Santoro MM. ROS signaling and redox biology in endothelial cells. Cell Mol Life Sci. 2015;72:3281–3303.
  • Abello N, Kerstjens HAM, Postma DS, et al. Protein tyrosine nitration: selectivity, physicochemical and biological consequences, denitration, and proteomics methods for the identification of tyrosine-nitrated proteins. J Proteome Res. 2009;8:3222–3238.
  • Villacorta L, Gao Z, Schopfer FJ. Nitro-fatty acids in cardiovascular regulation and diseases: characteristics and molecular mechanisms. Front Biosci. 2016;21:873–889.
  • Wang W, Li C, Yang T. Protection of nitro-fatty acid against kidney diseases. Am J Physiol Renal Physiol. 2016;310:F697–F704.
  • Dadoniene J, Cypiene A, Ryliskyte L, et al. Skin autofluorescence in systemic sclerosis is related to the disease and vascular damage: a cross-sectional analytic study of comparative groups. Dis Markers. 2015;2015:837470.
  • Brown DI, Griendling KK. Nox proteins in signal transduction. Free Radic Biol Med. 2009;47:1239–1253.
  • van Bon L, Cossu M, Loof A. Proteomic analysis of plasma identifies the Toll-like receptor agonists S100A8/A9 as a novel possible marker for systemic sclerosis phenotype. Ann Rheum Dis. 2014;73:1585–1589.
  • Piera-Velazquez S, Jimenez SA. Role of cellular senescence and NOX4-mediated oxidative stress in systemic sclerosis pathogenesis. Curr Rheumatol Rep. 2015;17:473.
  • Sambo P, Baroni SS, Luchetti M, et al. Oxidative stress in scleroderma: maintenance of scleroderma fibroblast phenotype by the constitutive up-regulation of reactive oxygen species generation through the NADPH oxidase complex pathway. Arthritis Rheum. 2001;44:2653–2664.
  • Ellmark SH, Dusting GJ, Fui MN, et al. The contribution of Nox4 to NADPH oxidase activity in mouse vascular smooth muscle. Cardiovasc Res. 2005;65:495–504.
  • Bretón-Romero R, Lamas S. Hydrogen peroxide signaling in vascular endothelial cells. Redox Biol. 2014;2:529–534.
  • Sambo P, Jannino L, Candela M, et al. Monocytes of patients with systemic sclerosis (scleroderma spontaneously release in vitro increased amounts of superoxide anion. J Invest Dermatol. 1999;112:78–84.
  • Amico D, Spadoni T, Rovinelli M, et al. Intracellular free radical production by peripheral blood T lymphocytes from patients with systemic sclerosis: role of NADPH oxidase and ERK1/2. Arthritis Res Ther. 2015;17:68.
  • Gill R, Tsung A, Billiar T. Linking oxidative stress to inflammation: toll-like receptors. Free Radic Biol Med. 2010;48:1121–1132.
  • Bhattacharyya S, Kelley K, Melichian DS, et al. Toll-like receptor 4 signaling augments transforming growth factor-beta responses: a novel mechanism for maintaining and amplifying fibrosis in scleroderma. Am J Pathol. 2013;182:192–205.
  • Karki R, Igwe OJ. Toll-like receptor 4-mediated nuclear factor kappa B activation is essential for sensing exogenous oxidants to propagate and maintain oxidative/nitrosative cellular stress. PLoS One. 2013;8:e73840.
  • Manček-Keber M, Frank-Bertoncelj M, Hafner-Bratkovič I, et al. Toll-like receptor 4 senses oxidative stress mediated by the oxidation of phospholipids in extracellular vesicles. Sci Signal. 2015;8:ra60.
  • Stifano G, Affandi AJ, Mathes AL, et al. Chronic Toll-like receptor 4 stimulation in skin induces inflammation, macrophage activation, transforming growth factor beta signature gene expression, and fibrosis. Arthritis Res Ther. 2014;16:R136.
  • Fang F, Marangoni RG, Zhou X, et al. Toll-like receptor 9 signaling is augmented in systemic sclerosis and elicits transforming growth factor beta-dependent fibroblast activation. Arthritis Rheumatol. 2016;68:1989–2002.
  • Piera-Velazquez S, Makul A, Jiménez SA. Increased expression of NAPDH oxidase 4 in systemic sclerosis dermal fibroblasts: regulation by transforming growth factor β. Arthritis Rheumatol. 2015;67:2749–2758.
  • Guo W, Saito S, Sanchez CG, et al. TGF-beta1 stimulates HDAC4 nucleus-to-cytoplasm translocation and NADPH oxidase 4-derived reactive oxygen species in normal human lung fibroblasts. Am J Physiol Lung Cell Mol Physiol. 2017;312:L936–LL944.
  • Bauernfeind FG, Horvath G, Stutz A, et al. Cutting edge: NF-kappaB activating pattern recognition and cytokine receptors license NLRP3 inflammasome activation by regulating NLRP3 expression. J Immunol. 2009;183:787–791.
  • Bauernfeind F, Bartok E, Rieger A, et al. Cutting edge: reactive oxygen species inhibitors block priming, but not activation, of the NLRP3 inflammasome. J Immunol. 2011;187:613–617.
  • Abais JM, Xia M, Zhang Y, et al. Redox regulation of NLRP3 inflammasomes: ROS as trigger or effector? Antioxid Redox Signal. 2015;22:1111–1129.
  • Martínez-Godínez MA, Cruz-Domínguez MP, Jara LJ. Expression of NLRP3 inflammasome, cytokines and vascular mediators in the skin of systemic sclerosis patients. Isr Med Assoc J. 2015;17:5–10.
  • Artlett CM, Sassi-Gaha S, Rieger JL, et al. The inflammasome activating caspase 1 mediates fibrosis and myofibroblast differentiation in systemic sclerosis. Arthritis Rheum. 2011;63:3563–3574.
  • Artlett CM, Sassi-Gaha S, Hope JL, et al. Mir-155 is overexpressed in systemic sclerosis fibroblasts and is required for NLRP3 inflammasome-mediated collagen synthesis during fibrosis. Arthritis Res Ther. 2017;19:144.
  • Leinonen HM, Kansanen E, Pölönen P, et al. Role of the Keap1-Nrf2 pathway in cancer. Adv Cancer Res. 2014;122:281–320.
  • Hennig P, Garstkiewicz M, Grossi S, et al. The crosstalk between Nrf2 and Inflammasomes. IJMS. 2018;19:562.
  • Brewer AC, Murray TVA, Arno M, et al. Nox4 regulates Nrf2 and glutathione redox in cardiomyocytes in vivo. Free Radic Biol Med. 2011;51:205–215.
  • Schroder K, Zhang M, Benkhoff S, et al. Nox4 is a protective reactive oxygen species generating vascular NADPH oxidase. Circ Res. 2012;110:1217–1225.
  • Bretón-Romero R, González de Orduña C, Romero N, et al. Critical role of hydrogen peroxide signaling in the sequential activation of p38 MAPK and eNOS in laminar shear stress. Free Radic Biol Med. 2012;52:1093–1100.
  • Jiang F, Liu G-S, Dusting GJ, et al. NADPH oxidase-dependent redox signaling in TGF-beta-mediated fibrotic responses. Redox Biol. 2014;2:267–272.
  • Lyle AN, Deshpande NN, Taniyama Y, et al. Poldip2, a novel regulator of Nox4 and cytoskeletal integrity in vascular smooth muscle cells. Circ Res. 2009;105:249–259.
  • Mittal M, Roth M, Konig P, et al. Hypoxia-dependent regulation of nonphagocytic NADPH oxidase subunit NOX4 in the pulmonary vasculature. Circ Res. 2007;101:258–267.
  • Pierce GF, Mustoe TA, Altrock BW, et al. Role of platelet-derived growth factor in wound healing. J Cell Biochem. 1991;45:319–326.
  • Trojanowska M. Role of PDGF in fibrotic diseases and systemic sclerosis. Rheumatology. 2008;47:v2–v4.
  • Gay S, Jones RE, Huang G-q, et al. Immunohistologic demonstration of platelet-derived growth factor (PDGF) and sis-oncogene expression in scleroderma. J Invest Dermatol. 1989;92:301–303.
  • Svegliati Baroni S, Santillo M, Bevilacqua F, et al. Stimulatory autoantibodies to the PDGF receptor in systemic sclerosis. N Engl J Med. 2006;354:2667–2676.
  • Bae YS, Sung J-Y, Kim O-S, et al. Platelet-derived growth factor-induced H(2)O(2) production requires the activation of phosphatidylinositol 3-kinase. J Biol Chem. 2000;275:10527–10531.
  • Kawaguchi Y, Takagi K, Hara M, et al. Angiotensin II in the lesional skin of systemic sclerosis patients contributes to tissue fibrosis via angiotensin II type 1 receptors. Arthritis Rheum. 2004;50:216–226.
  • Lee D-Y, Wauquier F, Eid AA, et al. Nox4 NADPH oxidase mediates peroxynitrite-dependent uncoupling of endothelial nitric-oxide synthase and fibronectin expression in response to angiotensin II: role of mitochondrial reactive oxygen species. J Biol Chem. 2013;288:28668–28686.
  • Luo J-Y, Liu X, Jiang M, et al. Oxidative stress markers in blood in systemic sclerosis: a meta-analysis. Mod Rheumatol. 2017;27:306–314.
  • Ames PRJ, Merashli M, Bucci T, et al. Isoprostane in systemic sclerosis: a systematic review and meta-analysis. Mod Rheumatol. 2018;1-6. doi:10.1080/14397595.2018.1469458.
  • Rommelaere S, Millet V, Gensollen T, et al. PPARalpha regulates the production of serum Vanin-1 by liver. FEBS Lett. 2013;587:3742–3748.
  • Lebo RV, Kredich NM. Inactivation of human gamma-glutamylcysteine synthetase by cystamine. Demonstration and quantification of enzyme-ligand complexes. J Biol Chem. 1978;253:2615–2623.
  • Calkins MJ, Townsend JA, Johnson DA, et al. Cystamine protects from 3-nitropropionic acid lesioning via induction of nf-e2 related factor 2 mediated transcription. Exp Neurol. 2010;224:307–317.
  • Kavian N, Mehlal S, Marut W, et al. Imbalance of the Vanin-1 pathway in systemic sclerosis. J Immunol. 2016;197:3326–3335.
  • Cutolo M, Sulli A, Smith V. Assessing microvascular changes in systemic sclerosis diagnosis and management. Nat Rev Rheumatol. 2010;6:578–587.
  • Altorok N, Wang Y, Kahaleh B. Endothelial dysfunction in systemic sclerosis. Curr Opin Rheumatol. 2014;26:615–620.
  • Au K, Singh MK, Bodukam V, et al. Atherosclerosis in systemic sclerosis: a systematic review and meta-analysis. Arthritis Rheum. 2011;63:2078–2090.
  • Meiszterics Z, Tímár O, Gaszner B, et al. Early morphologic and functional changes of atherosclerosis in systemic sclerosis-a systematic review and meta-analysis. Rheumatology. 2016;55:2119–2130.
  • Faccini A, Agricola E, Oppizzi M, et al. Coronary microvascular dysfunction in asymptomatic patients affected by systemic sclerosis – limited vs. diffuse form. Circ J. 2015;79:825–829.
  • Rollando D, Bezante GP, Sulli A. Brachial artery endothelial-dependent flow-mediated dilation identifies early-stage endothelial dysfunction in systemic sclerosis and correlates with nailfold microvascular impairment. J Rheumatol. 2010;37:1168–1173.
  • Hettema ME, Bootsma H, Kallenberg CG. Macrovascular disease and atherosclerosis in SSc. Rheumatology. 2008;47:578–583.
  • Merkel PA, Herlyn K, Martin RW, et al. Measuring disease activity and functional status in patients with scleroderma and Raynaud’s phenomenon. Arthritis Rheum. 2002;46:2410–2420.
  • Chung L, Fiorentino D. Digital ulcers in patients with systemic sclerosis. Autoimmun Rev. 2006;5:125–128.
  • Nihtyanova SI, Brough GM, Black CM, et al. Clinical burden of digital vasculopathy in limited and diffuse cutaneous systemic sclerosis. Ann Rheum Dis. 2008;67:120–123.
  • Aviña-Zubieta JA, Man A, Yurkovich M, et al. Early cardiovascular disease after the diagnosis of systemic sclerosis. Am J Med. 2016;129:324–331.
  • Chu S-Y, Chen Y-J, Liu C-J, et al. Increased risk of acute myocardial infarction in systemic sclerosis: a nationwide population-based study. Am J Med. 2013;126:982–988.
  • D'Angelo WA, Fries JF, Masi AT, et al. Pathologic observations in systemic sclerosis (scleroderma). A study of fifty-eight autopsy cases and fifty-eight matched controls. Am J Med. 1969;46:428–440.
  • Gyllenhammar T, Kanski M, Engblom H, et al. Decreased global myocardial perfusion at adenosine stress as a potential new biomarker for microvascular disease in systemic sclerosis: a magnetic resonance study. BMC Cardiovasc Disord. 2018;18:16.
  • Stein CM, Tanner SB, Awad JA, et al. Evidence of free radical-mediated injury (isoprostane overproduction) in scleroderma. Arthritis Rheum. 1996;39:1146–1150.
  • Cracowski J-L, Kom GD, Salvat-Melis M, et al. Postocclusive reactive hyperemia inversely correlates with urinary 15-F2t-isoprostane levels in systemic sclerosis. Free Radic Biol Med. 2006;40:1732–1737.
  • Volpe A, Biasi D, Caramaschi P, et al. Levels of F2-isoprostanes in systemic sclerosis: correlation with clinical features. Rheumatology.2006;45:314–320.
  • Ogawa F, Shimizu K, Muroi E, et al. Serum levels of 8-isoprostane, a marker of oxidative stress, are elevated in patients with systemic sclerosis. Rheumatology. 2006;45:815–818.
  • Riccieri V, Spadaro A, Fuksa L, et al. Specific oxidative stress parameters differently correlate with nailfold capillaroscopy changes and organ involvement in systemic sclerosis. Clin Rheumatol. 2008;27:225–230.
  • Kahaleh BM, Pan-Sheng F, Cerinic MM, et al. Study of endothelial dependent relaxation in scleroderma. Arthritis Rheum. 1993;36(Suppl):B233.
  • Yamamoto T, Katayama I, Nishioka K. Nitric oxide production and inducible nitric oxide synthase expression in systemic sclerosis. J Rheumatol. 1998;25:314–317.
  • Dooley A, Gao B, Bradley N, et al. Abnormal nitric oxide metabolism in systemic sclerosis: increased levels of nitrated proteins and asymmetric dimethylarginine. Rheumatology. 2006;45:676–684.
  • Shimizu K, Ogawa F, Muroi E, et al. Increased serum levels of nitrotyrosine, a marker for peroxynitrite production, in systemic sclerosis. Clin Exp Rheumatol. 2007;25:281–286.
  • Cotton SA, Herrick AL, Jayson MIV, et al. Endothelial expression of nitric oxide synthases and nitrotyrosine in systemic sclerosis skin. J Pathol. 1999;189:273–278.
  • Dreger H, Ludwig A, Weller A, et al. Epigenetic suppression of iNOS expression in human endothelial cells: a potential role of Ezh2-mediated H3K27me3. Genomics. 2016;107:145–149.
  • Balligand JL, Ungureanu-Longrois D, Simmons WW, et al. Induction of NO synthase in rat cardiac microvascular endothelial cells by IL-1 beta and IFN-gamma. Am J Physiol. 1995;268:H1293–H1303.
  • Lass A, Sohal RS. Effect of coenzyme Q(10) and alpha-tocopherol content of mitochondria on the production of superoxide anion radicals. FASEB J. 2000;14:87–94.
  • Nakamura YK, Omaye ST. Lipophilic compound-mediated gene expression and implication for intervention in reactive oxygen species (ROS)-related diseases: mini-review. Nutrients. 2010;2:725–736.
  • Ohta A, Uitto J. Procollagen gene expression by scleroderma fibroblasts in culture. Inhibition of collagen production and reduction of pro alpha 1(I) and pro alpha 1(III) collagen messenger RNA steady-state levels by retinoids. Arthritis Rheum. 1987;30:404–411.
  • Cracowski J-L, Girolet S, Imbert B, et al. Effects of short-term treatment with vitamin E in systemic sclerosis: a double blind, randomized, controlled clinical trial of efficacy based on urinary isoprostane measurement. Free Radic Biol Med. 2005;38:98–103.
  • Herrick AL, Hollis S, Schofield D, et al. A double-blind placebo-controlled trial of antioxidant therapy in limited cutaneous systemic sclerosis. Clin Exp Rheumatol. 2000;18:349–356.
  • de Souza RBC, Macedo AR, Kuruma KA, et al. Pentoxyphylline in association with vitamin E reduces cutaneous fibrosis in systemic sclerosis. Clin Rheumatol. 2009;28:1207–1212.
  • Ostojic P, Damjanov N. Effects of micronutrient antioxidants (alpha-tocopherol and ascorbic acid) on skin thickening and lung function in patients with early diffuse systemic sclerosis. Rheumatol Int. 2011;31:1051–1054.
  • Fiori G, Galluccio F, Braschi F, et al. Vitamin E gel reduces time of healing of digital ulcers in systemic sclerosis. Clin Exp Rheumatol. 2009;27:(Suppl 54):51–54.
  • Kremer JM. Treatment of systemic sclerosis with topical tretinoin: report of two cases. Arthritis Rheum. 1996;39:1070.
  • Ikeda T, Uede K, Hashizume H, et al. The vitamin A derivative etretinate improves skin sclerosis in patients with systemic sclerosis. J Dermatol Sci. 2004;34:62–66.
  • Samuni Y, Goldstein S, Dean OM, et al. The chemistry and biological activities of N-acetylcysteine. Biochim Biophys Acta. 2013;1830:4117–4129.
  • Meister A, Anderson ME. Glutathione. Annu Rev Biochem. 1983;52:711–760.
  • Rushworth GF, Megson IL. Existing and potential therapeutic uses for N-acetylcysteine: the need for conversion to intracellular glutathione for antioxidant benefits. Pharmacol Ther. 2014;141:150–159.
  • Deponte M. Glutathione catalysis and the reaction mechanisms of glutathione-dependent enzymes. Biochim Biophys Acta. 2013;1830:3217–3266.
  • Aldini G, Altomare A, Baron G, et al. N-acetylcysteine as an antioxidant and disulphide breaking agent: the reasons why. Free Radic Res. 2018;52:751–762.
  • Furst DE, Clements PJ, Harris R, et al. Measurement of clinical change in progressive systemic sclerosis: a 1 year double-blind placebo-controlled trial of N-acetylcysteine. Ann Rheum Dis. 1979;38:356–361.
  • Correa MJ, Mariz HA, Andrade LE, et al. Oral N-acetylcysteine in the treatment of Raynaud’s phenomenon secondary to systemic sclerosis: a randomized, double-blind, placebo-controlled clinical trial. Rev Bras Reumatol. 2014;54:452–458.
  • Rosato E, Borghese F, Pisarri S, et al. The treatment with N-acetylcysteine of Raynaud’s phenomenon and ischemic ulcers therapy in sclerodermic patients: a prospective observational study of 50 patients. Clin Rheumatol. 2009;28:1379–1384.
  • Rosato E, Rossi C, Molinaro I, et al. Long-term N-acetylcysteine therapy in systemic sclerosis interstitial lung disease: a retrospective study. Int J Immunopathol Pharmacol. 2011;24:727–733.
  • Rosato E, Cianci R, Barbano B, et al. N-acetylcysteine infusion reduces the resistance index of renal artery in the early stage of systemic sclerosis. Acta Pharmacol Sin. 2009;30:1283–1288.
  • Herbert CM, Jayson MIV, Lindberg KA, et al. Biosynthesis and maturation of skin collagen in scleroderma, and effect of d-penicillamine. Lancet. 1974;303:1187–192.
  • Nimni ME. A defect in the intramolecular and intermolecular cross-linking of collagen caused by penicillamine. I. Metabolic and functional abnormalities in soft tissues. J Biol Chem. 1968;243:1457–1466.
  • Nimni ME. Penicillamine and collagen metabolism. Scand J Rheumatol. 1979;8:71–78.
  • Uitto J, Helin P, Rasmussen O, et al. Skin collagen in patients with scleroderma: biosynthesis and maturation in vitro, and the effect of d-penicillamine. Ann Clin Res. 1970;2:228–234.
  • Trachootham D, Lu W, Ogasawara MA, et al. Redox regulation of cell survival. Antioxid Redox Signal. 2008;10:1343–1374.
  • Wadhwa S, Mumper RJ. D-penicillamine and other low molecular weight thiols: review of anticancer effects and related mechanisms. Cancer Lett. 2013;337:8–21.
  • Harris ED, Jr, Sjoerdsma A. Effect of penicillamine on human collagen and its possible application to treatment of scleroderma. Lancet. 1966;288:996–999.
  • Fulghum DD, Katz R. Penicillamine for scleroderma. Arch Dermatol. 1968;98:51–52.
  • Bluestone R, Grahame R, Holloway V, et al. Treatment of systemic sclerosis with d-penicillamine. A new method of observing the effects of treatment. Ann Rheum Dis. 1970;29:153–158.
  • Jayson MI, Lovell C, Black CM, et al. Penicillamine therapy in systemic sclerosis. Proc R Soc Med. 1977;70:82–88.
  • Furst DE, Clements PJ. D-penicillamine is not an effective treatment in systemic sclerosis. Scand J Rheumatol. 2001;30:189–191.
  • Medsger TA, Jr., Lucas M, Wildy KS, et al. D-penicillamine in systemic sclerosis? Yes! Scand J Rheumatol. 2001;30:192–194.
  • Clements PJ, Seibold JR, Furst DE, et al. High-dose versus low-dose d-penicillamine in early diffuse systemic sclerosis trial: lessons learned. Semin Arthritis Rheum. 2004;33:249–263.
  • Derk CT, Huaman G, Jimenez SA. A retrospective randomly selected cohort study of d-penicillamine treatment in rapidly progressive diffuse cutaneous systemic sclerosis of recent onset. Br J Dermatol. 2008;158:1063–1068.
  • Steen VD, Medsger TA. Jr. Improvement in skin thickening in systemic sclerosis associated with improved survival. Arthritis Rheum. 2001;44:2828–2835.
  • Jimenez SA, Sigal SH. A 15-year prospective study of treatment of rapidly progressive systemic sclerosis with d-penicillamine [see comment]. J Rheumatol. 1991;18:1496–1503.
  • Derk CT, Jimenez SA. Goodpasture-like syndrome induced by d-penicillamine in a patient with systemic sclerosis: report and review of the literature. J Rheumatol. 2003;30:1616–1620.
  • Dawkins RL, Zilko PJ, Carrano J, et al. Immunobiology of d-penicillamine. J Rheumatol Suppl. 1981;7:56–61.
  • Stocker R. Molecular mechanisms underlying the antiatherosclerotic and antidiabetic effects of Probucol, succinobucol, and other Probucol analogues. Curr Opin Lipidol. 2009;20:227–235.
  • Witting PK, Wu BJ, Raftery M, et al. Probucol protects against hypochlorite-induced endothelial dysfunction: identification of a novel pathway of Probucol oxidation to a biologically active intermediate. J Biol Chem. 2005;280:15612–15618.
  • Deng YM, Wu BJ, Witting PK, et al. Probucol protects against smooth muscle cell proliferation by upregulating heme oxygenase-1. Circulation. 2004;110:1855–1860.
  • Alam J, Stewart D, Touchard C, et al. Nrf2, a Cap’n’Collar transcription factor, regulates induction of the heme oxygenase-1 gene. J Biol Chem. 1999;274:26071–26078.
  • Takabe W, Matsukawa N, Kodama T, et al. Chemical structure-dependent gene expression of proteasome subunits via regulation of the antioxidant response element. Free Radic Res. 2006;40:21–30.
  • Zucoloto AZ, Manchope MF, Staurengo-Ferrari L, et al. Probucol attenuates lipopolysaccharide-induced leukocyte recruitment and inflammatory hyperalgesia: effect on NF-κB activation and cytokine production. Eur J Pharmacol. 2017;809:52–63.
  • Jiang JL, Zhang XH, Li NS, et al. Probucol decreases asymmetrical dimethylarginine level by alternation of protein arginine methyltransferase I and dimethylarginine dimethylaminohydrolase activity. Cardiovasc Drugs Ther. 2006;20:281–294.
  • Singla DK, Kaur K, Sharma AK, et al. Probucol promotes endogenous antioxidant reserve and confers protection against reperfusion injury. Can J Physiol Pharmacol. 2007;85:439–443.
  • Denton CP, Bunce TD, Dorado MB, et al. Probucol improves symptoms and reduces lipoprotein oxidation susceptibility in patients with Raynaud’s phenomenon. Rheumatology.1999;38:309–315.
  • Wassmann S, Laufs U, Müller K, et al. Cellular antioxidant effects of atorvastatin in vitro and in vivo. Arterioscler Thromb Vasc Biol. 2002;22:300–305.
  • Laufs U, Liao JK. Post-transcriptional regulation of endothelial nitric oxide synthase mRNA stability by Rho GTPase. J Biol Chem. 1998;273:24266–24271.
  • Ming X-F, Viswambharan H, Barandier C, et al. Rho GTPase/Rho kinase negatively regulates endothelial nitric oxide synthase phosphorylation through the inhibition of protein kinase B/Akt in human endothelial cells. Mol Cell Biol. 2002;22:8467–8477.
  • Feron O, Dessy C, Desager J-P, et al. Hydroxy-methylglutaryl-coenzyme A reductase inhibition promotes endothelial nitric oxide synthase activation through a decrease in caveolin abundance. Circulation. 2001;103:113–118.
  • Kleikers PWM, Wingler K, Hermans JJR, et al. NADPH oxidases as a source of oxidative stress and molecular target in ischemia/reperfusion injury. J Mol Med. 2012;90:1391–1406.
  • Brandes RP, Beer S, Ha T, et al. Withdrawal of cerivastatin induces monocyte chemoattractant protein 1 and tissue factor expression in cultured vascular smooth muscle cells. Arterioscler Thromb Vasc Biol. 2003;23:1794–1800.
  • Christ M, Bauersachs J, Liebetrau C, et al. Glucose increases endothelial-dependent superoxide formation in coronary arteries by NAD(P)H oxidase activation: attenuation by the 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor atorvastatin. Diabetes. 2002;51:2648–2652.
  • Wei Y-M, Li X, Xiong J, et al. Attenuation by statins of membrane raft-redox signaling in coronary arterial endothelium. J Pharmacol Exp Ther. 2013;345:170–179.
  • Wagner AH, Ko¨hler T, Ru¨ckschloss U, et al. Improvement of nitric oxide-dependent vasodilatation by HMG-CoA Reductase Inhibitors through attenuation of endothelial superoxide anion formation. Arterioscler Thromb Vasc Biol. 2000;20:61–69.
  • Antoniades C, Bakogiannis C, Tousoulis D, et al. Preoperative atorvastatin treatment in CABG patients rapidly improves vein graft redox state by inhibition of Rac1 and NADPH-oxidase activity. Circulation. 2010;122:S66–S73.
  • Kurusu A, Shou I, Nakamura S, et al. Effects of the new hydroxy-3-methylglutaryl coenzyme A reductase inhibitor fluvastatin on anti-oxidant enzyme activities and renal function in streptozotocin-induced diabetic rats. Clin Exp Pharmacol Physiol. 2000;27:767–770.
  • Zhu B, Shen H, Zhou J, et al. Effects of simvastatin on oxidative stress in streptozotocin-induced diabetic rats: a role for glomeruli protection. Nephron Exp Nephrol. 2005;101:e1–e8.
  • Pérez-Guerrero C, de Sotomayor MA, Jimenez L, et al. Effects of simvastatin on endothelial function after chronic inhibition of nitric oxide synthase by L-NAME. J Cardiovasc Pharmacol. 2003;42:204–210.
  • Colucci R, Fornai M, Duranti E, et al. Rosuvastatin prevents angiotensin II-induced vascular changes by inhibition of NAD(P)H oxidase and COX-1. Br J Pharmacol. 2013;169:554–566.
  • Dichtl W, Dulak J, Frick M, et al. HMG-CoA reductase inhibitors regulate inflammatory transcription factors in human endothelial and vascular smooth muscle cells. Arterioscler Thromb Vasc Biol. 2003;23:58–63.
  • Ladak K, Pope JE. A review of the effects of statins in systemic sclerosis. Semin Arthritis Rheum. 2016;45:698–705.
  • Del Papa N, Cortiana M, Vitali C, et al. Simvastatin reduces endothelial activation and damage but is partially ineffective in inducing endothelial repair in systemic sclerosis. J Rheumatol. 2008;35:1323–1328.
  • Abou-Raya A, Abou-Raya S, Helmii M. Statins: potentially useful in therapy of systemic sclerosis-related Raynaud’s phenomenon and digital ulcers. J Rheumatol. 2008;35:1801–1808.
  • Timár O, Szekanecz Z, Kerekes G, et al. Rosuvastatin improves impaired endothelial function, lowers high sensitivity CRP, complement and immuncomplex production in patients with systemic sclerosis – a prospective case-series study. Arthritis Res Ther. 2013;15:R105.
  • Kuwana M, Okazaki Y, Kaburaki J. Long-term beneficial effects of statins on vascular manifestations in patients with systemic sclerosis. Mod Rheumatol. 2009;19:530–535.
  • Rossi M, Bazzichi L, Ghiadoni L, et al. Increased finger skin vasoreactivity and stimulated vasomotion associated with simvastatin therapy in systemic sclerosis hypercholesterolemic patients. Rheumatol Int. 2012;32:3715–3721.
  • Furukawa S, Yasuda S, Amengual O, et al. Protective effect of pravastatin on vascular endothelium in patients with systemic sclerosis: a pilot study. Ann Rheum Dis. 2006;65:1118–1120.
  • Sadik HY, Moore TL, Vail A, et al. Lack of effect of 8 weeks atorvastatin on microvascular endothelial function in patients with systemic sclerosis. Rheumatology. 2010;49:990–996.
  • Tsou P-S, Talia NN, Pinney AJ, et al. Effect of oxidative stress on protein tyrosine phosphatase 1B in scleroderma dermal fibroblasts. Arthritis Rheum. 2012;64:1978–1989.
  • Rothstein JD. Edaravone: a new drug approved for ALS. Cell. 2017;171:725.
  • Wang H-M, Zhang T, Huang J-K, et al. Edaravone attenuates the proinflammatory response in amyloid-beta-treated microglia by inhibiting NLRP3 inflammasome-mediated IL-1beta secretion. Cell Physiol Biochem. 2017;43:1113–1125.
  • Mikawa K, Akamatsu H, Nishina K, et al. Effects of edaravone on human neutrophil function. Acta Anaesthesiol Scand. 2005;49:385–389.
  • Watanabe T, Tahara M, Todo S. The novel antioxidant edaravone: from bench to bedside. Cardiovasc Therap. 2008;26:101–114.
  • Yoshizaki A, Yanaba K, Ogawa A, et al. The specific free radical scavenger edaravone suppresses fibrosis in the bleomycin-induced and tight skin mouse models of systemic sclerosis. Arthritis Rheum. 2011;63:3086–3097.
  • Park S, Karunakaran U, Jeoung N, et al. Physiological effect and therapeutic application of alpha lipoic acid. Curr Med Chem. 2014;21:3636–3645.
  • Jones W, Li X, Qu Z-c, et al. Uptake, recycling, and antioxidant actions of alpha-lipoic acid in endothelial cells. Free Radic Biol Med. 2002;33:83–93.
  • Wada H, Shintani D, Ohlrogge J. Why do mitochondria synthesize fatty acids? Evidence for involvement in lipoic acid production. Proc Natl Acad Sci USA. 1997;94:1591–1596.
  • Biewenga GP, Haenen GR, Bast A. The pharmacology of the antioxidant lipoic acid. Gen Pharmacol. 1997;29:315–331.
  • Bast A, Haenen GR. Lipoic acid: a multifunctional antioxidant. Biofactors. 2003;17:207–213.
  • Petersen Shay K, Moreau RF, Smith EJ, et al. Is alpha-lipoic acid a scavenger of reactive oxygen species in vivo? Evidence for its initiation of stress signaling pathways that promote endogenous antioxidant capacity. IUBMB Life. 2008;60:362–367.
  • Busse E, Zimmer G, Schopohl B, et al. Influence of alpha-lipoic acid on intracellular glutathione in vitro and in vivo. Arzneimittelforschung. 1992;42:829–831.
  • Han D, Handelman G, Marcocci L, et al. Lipoic acid increases de novo synthesis of cellular glutathione by improving cystine utilization. Biofactors. 1997;6:321–338.
  • Mary J, Vougier S, Picot CR, et al. Enzymatic reactions involved in the repair of oxidized proteins. Exp Gerontol. 2004;39:1117–1123.
  • Ying Z, Kampfrath T, Sun Q, et al. Evidence that α-lipoic acid inhibits NF-κB activation independent of its antioxidant function. Inflamm Res. 2011;60:219–225.
  • Ou P, Tritschler HJ, Wolff SP. Thioctic (lipoic) acid: a therapeutic metal-chelating antioxidant? Biochem Pharmacol. 1995;50:123–126.
  • Goralska M, Dackor R, Holley B, et al. Alpha lipoic acid changes iron uptake and storage in lens epithelial cells. Exp Eye Res. 2003;76:241–248.
  • Tsou PS, Balogh B, Pinney AJ, et al. Lipoic acid plays a role in scleroderma: insights obtained from scleroderma dermal fibroblasts. Arthritis Res Ther. 2014;16:411.
  • Kavian N, Marut W, Servettaz A, et al. Pantethine prevents murine systemic sclerosis through the inhibition of microparticle shedding. Arthritis Rheumatol. 2015;67:1881–1890.
  • Bian D, Zhang J, Wu X, et al. Asiatic acid isolated from Centella asiatica inhibits TGF-beta1-induced collagen expression in human keloid fibroblasts via PPAR-gamma activation. Int J Biol Sci. 2013;9:1032–1042.
  • Xia X, Dai C, Yu H, et al. Asiatic acid prevents the development of interstitial lung disease in a hypochlorous acid-induced mouse model of scleroderma. Oncol Lett. 2018;15:8711–8716.
  • Liu M, Yang J, Li M. Tanshinone IIA attenuates interleukin-17A-induced systemic sclerosis patient-derived dermal vascular smooth muscle cell activation via inhibition of the extracellular signal-regulated kinase signaling pathway. Clinics. 2015;70:250–256.
  • Song Y, Zhu L, Li M. Antifibrotic effects of crocetin in scleroderma fibroblasts and in bleomycin-induced sclerotic mice. Clinics. 2013;68:1350–1357.
  • Dooley A, Shi-Wen X, Aden N, et al. Modulation of collagen type I, fibronectin and dermal fibroblast function and activity, in systemic sclerosis by the antioxidant epigallocatechin-3-gallate. Rheumatology. 2010;49:2024–2036.
  • Dooley A, Bruckdorfer KR, Abraham DJ. Modulation of fibrosis in systemic sclerosis by nitric oxide and antioxidants. Cardiol Res Pract. 2012; 2012:521958.
  • Venkatesan N, Punithavathi V, Chandrakasan G. Curcumin protects bleomycin-induced lung injury in rats. Life Sci. 1997;61:PL51–PL58.
  • Tourkina E, Gooz P, Oates JC, et al. Curcumin-induced apoptosis in scleroderma lung fibroblasts: role of protein kinase cepsilon. Am J Respir Cell Mol Biol. 2004;31:28–35.
  • Rushworth SA, Ogborne RM, Charalambos CA, et al. Role of protein kinase C delta in curcumin-induced antioxidant response element-mediated gene expression in human monocytes. Biochem Biophys Res Commun. 2006;341:1007–1016.
  • Song K, Peng S, Sun Z, et al. Curcumin suppresses TGF-beta signaling by inhibition of TGIF degradation in scleroderma fibroblasts. Biochem Biophys Res Commun. 2011;411:821–825.
  • Aggarwal BB, Sundaram C, Malani N, et al. Curcumin: the Indian solid gold. Adv Exp Med Biol. 2007;595:1–75.
  • Sharma RA, Steward WP, Gescher AJ. Pharmacokinetics and pharmacodynamics of curcumin. Adv Exp Med Biol. 2007;595:453–470.
  • Smulik R, Dębski D, Zielonka J, et al. Nitroxyl (HNO) reacts with molecular oxygen and forms peroxynitrite at physiological pH. J Biol Chem. 2014;289:35570–35581.
  • Samarakoon R, Overstreet JM, Higgins PJ. TGF-beta signaling in tissue fibrosis: redox controls, target genes and therapeutic opportunities. Cell Signal. 2013;25:264–268.
  • Cucoranu I, Clempus R, Dikalova A, et al. NAD(P)H oxidase 4 mediates transforming growth factor-beta1-induced differentiation of cardiac fibroblasts into myofibroblasts. Circ Res. 2005;97:900–907.
  • Sturrock A, Cahill B, Norman K, et al. Transforming growth factor-beta1 induces Nox4 NAD(P)H oxidase and reactive oxygen species-dependent proliferation in human pulmonary artery smooth muscle cells. Am J Physiol Lung Cell Mol Physiol. 2006;290:L661–LL673.
  • Jiang F, Zhang Y, Dusting GJ. NADPH oxidase-mediated redox signaling: roles in cellular stress response, stress tolerance, and tissue repair. Pharmacol Rev. 2011;63:218–242.
  • Barcellos-Hoff MH, Dix TA. Redox-mediated activation of latent transforming growth factor-beta 1. Mol Endocrinol. 1996;10:1077–1083.
  • Leonarduzzi G, Scavazza A, Biasi F, et al. The lipid peroxidation end product 4-hydroxy-2,3-nonenal up-regulates transforming growth factor beta1 expression in the macrophage lineage: a link between oxidative injury and fibrosclerosis. FASEB J. 1997;11:851–857.
  • Hecker L, Vittal R, Jones T, et al. NADPH oxidase-4 mediates myofibroblast activation and fibrogenic responses to lung injury. Nat Med. 2009;15:1077–1081.
  • Teixeira G, Szyndralewiez C, Molango S, et al. Therapeutic potential of NADPH oxidase 1/4 inhibitors. Br J Pharmacol. 2017;174:1647–1669.
  • Murphy-Marshman H, Quensel K, Shi-wen X et al. Antioxidants and NOX1/NOX4 inhibition blocks TGFbeta1-induced CCN2 and alpha-SMA expression in dermal and gingival fibroblasts. PLoS One. 2017;12:e0186740.
  • Parnham MJ, Haber VE, Giamarellos-Bourboulis EJ, et al. Azithromycin: mechanisms of action and their relevance for clinical applications. Pharmacol Ther. 2014;143:225–245.
  • Tsubouchi K, Araya J, Minagawa S, et al. Azithromycin attenuates myofibroblast differentiation and lung fibrosis development through proteasomal degradation of NOX4. Autophagy. 2017;13:1420–1434.
  • Dosoki H, Stegemann A, Taha M, et al. Targeting of NADPH oxidase in vitro and in vivo suppresses fibroblast activation and experimental skin fibrosis. Exp Dermatol. 2017;26:73–81.
  • Pignatelli P, Carnevale R, Pastori D, et al. Immediate antioxidant and antiplatelet effect of atorvastatin via inhibition of Nox2. Circulation. 2012;126:92–103.
  • Pignatelli P, Carnevale R, Di Santo S, et al. Rosuvastatin reduces platelet recruitment by inhibiting NADPH oxidase activation. Biochem Pharmacol. 2012;84:1635–1642.
  • Zhou G, Wang Y, He P, et al. Probucol inhibited Nox2 expression and attenuated podocyte injury in type 2 diabetic nephropathy of db/db mice. Biol Pharm Bull. 2013;36:1883–1890.
  • Zhu BB, Wang H, Chi YF, et al. Protective effects of probucol on Ox-LDL-induced epithelial-mesenchymal transition in human renal proximal tubular epithelial cells via LOX-1/ROS/MAPK signaling. Mol Med Rep. 2018;17:1289–1296.
  • Cruz-Solbes AS, Youker K. Epithelial to mesenchymal transition (EMT) and endothelial to mesenchymal transition (EndMT): role and implications in kidney fibrosis. Results Probl Cell Differ. 2017;60:345–372.
  • O'Neill HC, Rancourt RC, White CW. Lipoic acid suppression of neutrophil respiratory burst: effect of NADPH. Antioxid Redox Signal. 2008;10:277–285.
  • Dong Y, Wang H, Chen Z. Alpha-lipoic acid attenuates cerebral ischemia and reperfusion injury via insulin receptor and PI3K/Akt-Dependent inhibition of NADPH oxidase. Int J Endocrinol. 2015;2015:1.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.