615
Views
15
CrossRef citations to date
0
Altmetric
Review

The impact of aneuploidy on cellular homeostasis

, & ORCID Icon
Pages 705-713 | Received 22 Mar 2019, Accepted 18 May 2019, Published online: 07 Jun 2019

References

  • Potapova T, Gorbsky GJ. The consequences of chromosome segregation errors in mitosis and meiosis. Biology. 2017;6(1):12.
  • Sheltzer JM, Torres EM, Dunham MJ, et al. Transcriptional consequences of aneuploidy. Proc Natl Acad Sci U S A. 2012;109(31):12644–12649.
  • Beach RR, Ricci-Tam C, Brennan CM, et al. Aneuploidy causes non-genetic individuality. Cell. 2017;169(2):229.e21–242.e21.
  • Torres EM, Sokolsky T, Tucker CM, et al. Effects of aneuploidy on cellular physiology and cell division in haploid yeast. Science. 2007;317(5840):916–924.
  • Zhu J, Tsai HJ, Gordon MR, et al. Cellular stress associated with aneuploidy. Dev Cell. 2018;44(4):420–431.
  • Simonetti G, Bruno S, Padella A, et al. Aneuploidy: cancer strength or vulnerability? Int J Cancer. 2019;144(1):8–25.
  • Schieber M, Chandel NS. ROS function in redox signaling and oxidative stress. Curr Biol. 2014;24(10):R453–R462.
  • Korenberg JR, Chen XN, Schipper R, et al. Down syndrome phenotypes: the consequences of chromosomal imbalance. Proc Natl Acad Sci U S A. 1994;91(11):4997–5001.
  • Torres EM, Dephoure N, Panneerselvam A, et al. Identification of aneuploidy-tolerating mutations. Cell. 2010;143(1):71–83.
  • Chen G, Rubinstein B, Li R. Whole chromosome aneuploidy: big mutations drive adaptation by phenotypic leap. BioEssays. 2012;34(10):893–900.
  • Pavlistova L, Zemanova Z, Sarova I, et al. Change in ploidy status from hyperdiploid to near-tetraploid in multiple myeloma associated with bortezomib/lenalidomide resistance. Cancer Genet. 2014;207(7–8):326–331.
  • Duesberg P, Stindl R, Hehlmann R. Explaining the high mutation rates of cancer cells to drug and multidrug resistance by chromosome reassortments that are catalyzed by aneuploidy. Proc Natl Acad Sci U S A. 2000;97(26):14295–14300.
  • Williams BR, Amon A. Aneuploidy: cancer’s fatal flaw? Cancer Res. 2009;69(13):5289–5291.
  • Fang X, Zhang P. Aneuploidy and tumorigenesis. Semin Cell Dev Biol. 2011;22(6):595–601.
  • Moloney JN, Cotter TG. ROS signalling in the biology of cancer. Semin Cell Dev Biol. 2018;80:50–64.
  • Li M, Fang X, Baker DJ, et al. The ATM-p53 pathway suppresses aneuploidy-induced tumorigenesis. Proc Natl Acad Sci U S A. 2010;107(32):14188–14193.
  • Bakhoum SF, Silkworth WT, Nardi IK, et al. The mitotic origin of chromosomal instability. Curr Biol. 2014;24(4):R148–R149.
  • Bakhoum SF, Genovese G, Compton DA. Deviant kinetochore microtubule dynamics underlie chromosomal instability. Curr Biol. 2009;19(22):1937–1942.
  • Gordon DJ, Resio B, Pellman D. Causes and consequences of aneuploidy in cancer. Nat Rev Genet. 2012;13(3):189–203.
  • Shimizu N, Shingaki K, Kaneko-Sasaguri Y, et al. When, where and how the bridge breaks: anaphase bridge breakage plays a crucial role in gene amplification and HSR generation. Exp Cell Res. 2005;302(2):233–243.
  • Thompson SL, Compton DA. Examining the link between chromosomal instability and aneuploidy in human cells. J Cell Biol. 2008;180(4):665–672.
  • Sansregret L, Swanton C. The role of aneuploidy in cancer evolution. Cold Spring Harb Perspect Med. 2017;7(1):1–18.
  • Payen VL, Zampieri LX, Porporato PE, et al. Pro- and antitumor effects of mitochondrial reactive oxygen species. Cancer Metastasis Rev. 2019 DOI:10.1007/s10555-019-09789-2
  • Broome SC, Woodhead JST, Merry TL. Mitochondria-targeted antioxidants and skeletal muscle function. Antioxidants (Basel). 2018;7(8):1–12.
  • Reczek CR, Chandel NS. The two faces of reactive oxygen species in cancer. Annu Rev Cancer Biol. 2017;1(1):79–98.
  • Prasad S, Gupta SC, Tyagi AK. Reactive oxygen species (ROS) and cancer: role of antioxidative nutraceuticals. Cancer Lett. 2017;387:95–105.
  • Chaiswing L, St Clair WH, St Clair DK. Redox paradox: a novel approach to therapeutics-resistant cancer. Antioxid Redox Signal. 2018;29(13):1237–1272.
  • Limoli CL, Giedzinski E, Morgan WF, et al. Persistent oxidative stress in chromosomally unstable cells. Cancer Res. 2003;63(12):3107–3111.
  • Roh M, van der Meer R, Abdulkadir SA. Tumorigenic polyploid cells contain elevated ROS and ARE selectively targeted by antioxidant treatment. J Cell Physiol. 2012;227(2):801–812.
  • Andriani GA, Almeida VP, Faggioli F, et al. Whole chromosome instability induces senescence and promotes SASP. Sci Rep. 2016;6:35218.
  • Pick E. Role of the Rho GTPase Rac in the activation of the phagocyte NADPH oxidase: outsourcing a key task. Small GTPases 2014;5:e27952.
  • Davaadelger B, Shen H, Maki CG. Novel roles for P53 in the genesis and targeting of tetraploid cancer cells. PLOS ONE. 2014;9(11):e110844.
  • Haynes CM, Titus EA, Cooper AA. Degradation of misfolded proteins prevents ER-derived oxidative stress and cell death. Mol Cell. 2004;15(5):767–776.
  • Khan M, Shaukat Z, Saint R, et al. Chromosomal instability causes sensitivity to protein folding stress and ATP depletion. Biol Open. 2018;7(10).
  • Kumari S, Badana AK, G MM, et al. Reactive oxygen species: a key constituent in cancer survival. Biomark Insights. 2018;13:1177271918755391.
  • Hojo T, Maishi N, Towfik AM, et al. ROS enhance angiogenic properties via regulation of NRF2 in tumor endothelial cells. Oncotarget. 2017;8(28):45484–45495.
  • Ragu S, Faye G, Iraqui I, et al. Oxygen metabolism and reactive oxygen species cause chromosomal rearrangements and cell death. Proc Natl Acad Sci U S A. 2007;104(23):9747–9752.
  • Dephoure N, Hwang S, O’Sullivan C, et al. Quantitative proteomic analysis reveals posttranslational responses to aneuploidy in yeast. eLife. 2014;3:e03023.
  • Clemente-Ruiz M, Murillo-Maldonado JM, Benhra N, et al. Gene dosage imbalance contributes to chromosomal instability-induced tumorigenesis. Dev Cell. 2016;36(3):290–302.
  • Janssen A, van der Burg M, Szuhai K, et al. Chromosome segregation errors as a cause of DNA damage and structural chromosome aberrations. Science. 2011;333(6051):1895–1898.
  • Degtyareva NP, Chen L, Mieczkowski P, et al. Chronic oxidative DNA damage due to DNA repair defects causes chromosomal instability in Saccharomyces cerevisiae. Mol Cell Biol. 2008;28(17):5432–5445.
  • Torres EM, Williams BR, Amon A. Aneuploidy: cells losing their balance. Genetics. 2008;179(2):737–746.
  • Katz W, Weinstein B, Solomon F. Regulation of tubulin levels and microtubule assembly in Saccharomyces cerevisiae: consequences of altered tubulin gene copy number. Mol Cell Biol. 1990;10(10):5286–5294.
  • Elsea SH, Girirajan S. Smith-Magenis syndrome. Eur J Hum Genet. 2008;16(4):412–421.
  • Lindsley DL, Sandler L, Baker BS, et al. Segmental aneuploidy and the genetic gross structure of the Drosophila genome. Genetics. 1972;71(1):157–184.
  • Masuda A, Takahashi T. Chromosome instability in human lung cancers: possible underlying mechanisms and potential consequences in the pathogenesis. Oncogene. 2002;21(45):6884–6897.
  • Fulda S, Galluzzi L, Kroemer G. Targeting mitochondria for cancer therapy. Nat Rev Drug Discov. 2010;9(6):447–464.
  • Oromendia AB, Dodgson SE, Amon A. Aneuploidy causes proteotoxic stress in yeast. Genes Dev. 2012;26(24):2696–2708.
  • Wong HWS, Shaukat Z, Wang J, et al. JNK signaling is needed to tolerate chromosomal instability. Cell Cycle. 2014;13(4):622–631.
  • Liu D, Shaukat Z, Xu T, et al. Autophagy regulates the survival of cells with chromosomal instability. Oncotarget. 2016;7(39):63913–63923.
  • Dodgson SE, Kim S, Costanzo M, et al. Chromosome-specific and global effects of aneuploidy in Saccharomyces cerevisiae. Genetics. 2016;202(4):1395–1409.
  • Shaukat Z, Liu D, Choo A, et al. Chromosomal instability causes sensitivity to metabolic stress. Oncogene. 2015;34(31):4044–4055.
  • Brault V, Duchon A, Romestaing C, et al. Opposite phenotypes of muscle strength and locomotor function in mouse models of partial trisomy and monosomy 21 for the proximal Hspa13-App region. PLOS Genet. 2015;11(3):e1005062.
  • Pinton P, Giorgi C, Siviero R, et al. Calcium and apoptosis: ER-mitochondria Ca2+ transfer in the control of apoptosis. Oncogene. 2008;27(50):6407–6418.
  • Beaupere C, Dinatto L, Wasko BM, et al. Genetic screen identifies adaptive aneuploidy as a key mediator of ER stress resistance in yeast. Proc Natl Acad Sci U S A. 2018;115(38):9586–9591.
  • Zhang J, Wang Y, Zhou Y, et al. Jolkinolide B induces apoptosis of colorectal carcinoma through ROS-ER stress-Ca2+-mitochondria dependent pathway. Oncotarget. 2017;8(53):91223–91237.
  • Brand MD. The sites and topology of mitochondrial superoxide production. Exp Gerontol. 2010;45(7–8):466–472.
  • Donnelly N, Passerini V, Dürrbaum M, et al. HSF1 deficiency and impaired HSP90-dependent protein folding are hallmarks of aneuploid human cells. EMBO J. 2014;33(20):2374–2387.
  • Pfau SJ, Amon A. Chromosomal instability and aneuploidy in cancer: from yeast to man. EMBO Rep. 2012;13(6):515–527.
  • Hockenbery DM. Targeting mitochondria for cancer therapy. Environ Mol Mutagen. 2010;51(5):476–489.
  • Egnatchik RA, Leamy AK, Jacobson DA, et al. ER calcium release promotes mitochondrial dysfunction and hepatic cell lipotoxicity in response to palmitate overload. Mol Metab. 2014;3(5):544–553.
  • Kumari G, Ulrich T, Krause M, et al. Induction of p21Cip1 protein and cell cycle arrest after inhibition of aurora B kinase is attributed to aneuploidy and reactive oxygen species. J Biol Chem. 2014;289(23):16072–16084.
  • Murata M, Kong X, Moncada E, et al. NAD consumption by PARP1 in response to DNA damage triggers metabolic shift critical for damaged cell survival. bioRxiv 2018; 375212.
  • Santaguida S, Vasile E, White E, et al. Aneuploidy-induced cellular stresses limit autophagic degradation. Genes Dev. 2015;29(19):2010–2021.
  • Ariyoshi K, Miura T, Kasai K, et al. Induction of genomic instability and activation of autophagy in artificial human aneuploid cells. Mutat Res. 2016;790:19–30.
  • Settembre C, Di Malta C, Polito VA, et al. TFEB links autophagy to lysosomal biogenesis. Science. 2011;332(6036):1429–1433.
  • D’Angiolella V, Santarpia C, Grieco D. Oxidative stress overrides the spindle checkpoint. Cell Cycle. 2007;6(5):576–579.
  • Ikawa-Yoshida A, Ando K, Oki E, et al. Contribution of BubR1 to oxidative stress-induced aneuploidy in p53-deficient cells. Cancer Med. 2013;2(4):447–456.
  • Bollineni RC, Hoffmann R, Fedorova M. Proteome-wide profiling of carbonylated proteins and carbonylation sites in HeLa cells under mild oxidative stress conditions. Free Radic Biol Med. 2014;68:186–195.
  • Wang GF, Dong Q, Bai Y, et al. Oxidative stress induces mitotic arrest by inhibiting Aurora A-involved mitotic spindle formation. Free Radic Biol Med. 2017;103:177–187.
  • Goldenson B, Crispino JD. The Aurora kinases in cell cycle and leukemia. Oncogene. 2015;34(5):537–545.
  • Cho MG, Ahn JH, Choi HS, et al. DNA double-strand breaks and Aurora B mislocalization induced by exposure of early mitotic cells to H2O2 appear to increase chromatin bridges and resultant cytokinesis failure. Free Radic Biol Med. 2017;108:129–145.
  • Mailankot M, Smith D, Howell S, et al. Cell cycle arrest by kynurenine in lens epithelial cells. Invest Ophthalmol Vis Sci. 2008;49(12):5466–5475.
  • Guo J, Kim HS, Asmis R, et al. Interactions of β tubulin isotypes with glutathione in differentiated neuroblastoma cells subject to oxidative stress. Cytoskeleton. 2018;75(7):283–289.
  • Chen W, Seefeldt T, Young A, et al. Microtubule S-glutathionylation as a potential approach for antimitotic agents. BMC Cancer. 2012;12(1):245.
  • Xu Q, Huff LP, Fujii M, et al. Redox regulation of the actin cytoskeleton and its role in the vascular system. Free Radic Biol Med. 2017;109:84–107.
  • Ohshima S. Centrosome aberrations associated with cellular senescence and p53 localization at supernumerary centrosomes. Oxid Med Cell Longev. 2012;2012:217594.
  • Brinkley BR. Managing the centrosome numbers game: from chaos to stability in cancer cell division. Trends Cell Biol. 2001;11(1):18–21.
  • Jusino S, Fernández-Padín FM, Saavedra HI. Centrosome aberrations and chromosome instability contribute to tumorigenesis and intra-tumor heterogeneity. J Cancer Metastasis Treat. 2018;4:43.
  • Duensing S, Münger K. Centrosome abnormalities, genomic instability and carcinogenic progression. Biochim Biophys Acta. 2001;1471(2):M81–M88.
  • Castellanos E, Dominguez P, Gonzalez C. Centrosome dysfunction in Drosophila neural stem cells causes tumors that are not due to genome instability. Curr Biol. 2008;18(16):1209–1214.
  • Mussman JG, Horn HF, Carroll PE, et al. Synergistic induction of centrosome hyperamplification by loss of p53 and cyclin E overexpression. Oncogene. 2000;19(13):1635–1646.
  • Zeng X, Shaikh FY, Harrison MK, et al. The Ras oncogene signals centrosome amplification in mammary epithelial cells through cyclin D1/Cdk4 and Nek2. Oncogene. 2010;29(36):5103–5112.
  • Leonard MK, Hill NT, Bubulya PA, et al. The PTEN-Akt pathway impacts the integrity and composition of mitotic centrosomes. Cell Cycle. 2013;12(9):1406–1415.
  • Chae S, Yun C, Um H, et al. Centrosome amplification and multinuclear phenotypes are induced by hydrogen peroxide. Exp Mol Med. 2005;37(5):482–487.
  • Ward A, Hudson JW. p53-Dependent and cell specific epigenetic regulation of the polo-like kinases under oxidative stress. PLoS One. 2014;9(1):e87918.
  • Wang P, Lu YC, Wang J, et al. Type 2 diabetes promotes cell centrosome amplification via AKT-ROS-dependent signalling of ROCK1 and 14–3-3σ. Cell Physiol Biochem. 2018;47(1):356–367.
  • Arnandis T, Monteiro P, Adams SD, et al. Oxidative stress in cells with extra centrosomes drives non-cell-autonomous invasion. Dev Cell. 2018;47(4):409–424.e9.
  • Glorieux C, Calderon PB. Catalase down-regulation in cancer cells exposed to arsenic trioxide is involved in their increased sensitivity to a pro-oxidant treatment. Cancer Cell Int. 2018;18(1):24.
  • Ralph SJ, Nozuhur S, Moreno-Sanchez R, et al. NSAID celecoxib: a potent mitochondrial pro-oxidant cytotoxic agent sensitizing metastatic cancers and cancer stem cells to chemotherapy. JCMT. 2018;4(9):49
  • Rodic S, Vincent MD. Reactive oxygen species (ROS) are a key determinant of cancer’s metabolic phenotype. Int J Cancer. 2018;142(3):440–448.
  • Wang K, Jiang J, Lei Y, et al. Targeting metabolic–redox circuits for cancer therapy. Trends Biochem Sci. 2019;44(5):401–414.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.