1,855
Views
84
CrossRef citations to date
0
Altmetric
Review Article

Hormones and oxidative stress: an overview

&
Pages 1-26 | Received 23 Jul 2019, Accepted 03 Dec 2019, Published online: 22 Dec 2019

References

  • Sies H, Berndt C, Jones DP. Oxidative stress. Annu Rev Biochem. 2017;86(1):715–748.
  • Sies H. Oxidative stress: from basic research to clinical application. Am J Med. 1991;91(3C):31S–38S.
  • Harris ED. Regulation of antioxidant enzymes. Faseb J. 1992;6(9):2675–2683.
  • Mancini A, Festa R, Donna V, et al. Hormones and antioxidant systems: role of pituitary and pituitary-dependent axes. J Endocrinol Invest. 2010;33(6):422–433.
  • Nishizawa H, Handayaningsih AE, Iguchi G, et al. Enhanced oxidative stress in GH-transgenic rat and acromegaly in humans. Growth Horm IGF Res. 2012;22(2):64–68.
  • Reiter RJ. The pineal and its hormones in the control of reproduction in mammals. Endocr Rev. 1980;1(2):109–131.
  • Kennaway DJ, Wright H. Melatonin and circadian rhythms. Curr Top Med Chem. 2002;2(2):199–209.
  • Carrillo-Vico A, Lardone PJ, Álvarez-Sánchez N, et al. Melatonin: buffering the immune system. Int J Mol Sci. 2013;14(4):8638–8683.
  • Tarocco A, Caroccia N, Morciano G, et al. Melatonin as a master regulator of cell death and inflammation: molecular mechanisms and clinical implications for newborn care. Cell Death Dis. 2019;10(4):317.
  • Hacışevki A, Baba B. An overview of melatonin as an antioxidant molecule: A biochemical approach. In: Melatonin-molecular biology, clinical and pharmaceutical approaches. London: IntechOpen; 2018.
  • Galano A, Reiter RJ. Melatonin and its metabolites vs oxidative stress: from individual actions to collective protection. J Pineal Res. 2018;65(1):e12514.
  • Pang YW, Jiang XL, Zhao SJ, et al. Beneficial role of melatonin in protecting mammalian gametes and embryos from oxidative damage. J Integr Agric. 2018;17(10):2320–2335.
  • Tordjman S, Chokron S, Delorme R, et al. Melatonin: pharmacology, functions and therapeutic benefits. Curr Neuropharmacol. 2017;15(3):434–443.
  • Zhao D, Yu Y, Shen Y, et al. Melatonin synthesis and function: evolutionary history in animals and plants. Front Endocrinol (Lausanne). 2019;10:249.
  • Reiter RJ, Tan DX, Mayo JC, et al. Melatonin as an antioxidant: biochemical mechanisms and pathophysiological implications in humans. Acta Biochim Pol. 2003;50(4):1129–1146.
  • Mogulkoc R, Baltaci AK, Oztekin E, et al. Hyperthyroidism causes lipid peroxidation in kidney and testis tissues of rats: protective role of melatonin. Neuro Endocrinol Lett. 2005;26(6):806–810.
  • Eghbal MA, Eftekhari A, Ahmadian E, et al. A review of biological and pharmacological actions of melatonin: oxidant and prooxidant properties. Pharm Bioprocess. 2016;4(4):69–81.
  • Reiter RJ, Tan DX, Rosales-Corral S, et al. Mitochondria: central organelles for melatonin’s antioxidant and anti-aging actions. Molecules. 2018;23(2):509.
  • Ianăş O, Olinescu R, Bădescu I. Melatonin involvement in oxidative processes. Endocrinologie. 1991;29(3–4):147–153.
  • Tan DX. Melatonin: a potent, endogenous hydroxyl radical scavenger. Endocr J. 1993;1:57–60.
  • Hardeland R, Pandi-Perumal SR. Melatonin, a potent agent in antioxidative defense: actions as a natural food constituent, gastrointestinal factor, drug and prodrug. Nutr Metab (Lond)). 2005;2(1):22.
  • Martinez GR, Almeida EA, Klitzke CF, et al. Measurement of melatonin and its metabolites: importance for the evaluation of their biological roles. Endocrine. 2005;27(2):111–118.
  • Tan DX, Manchester LC, Reiter RJ, et al. Significance of melatonin in antioxidative defense system: reactions and products. Biol Signals Recept. 2000;9(3–4):137–159.
  • Allegra M, Reiter RJ, Tan DX, et al. The chemistry of melatonin’s interaction with reactive species. J Pineal Res. 2003;34(1):1–10.
  • Ma X, Idle JR, Krausz KW, et al. Metabolism of melatonin by human cytochromes p450. Drug Metab Dispos. 2005;33(4):489–494.
  • Ma X, Idle JR, Krausz KW, et al. Urinary metabolites and antioxidant products of exogenous melatonin in the mouse. J Pineal Res. 2006;40(4):343–349.
  • Rodriguez C, Mayo JC, Sainz RM, et al. Regulation of antioxidant enzymes: a significant role for melatonin. J Pineal Res. 2004;36(1):1–9.
  • Okatani Y, Wakatsuki A, Kaneda C. Melatonin increases activities of glutathione peroxidase and superoxide dismutase in fetal rat brain. J Pineal Res. 2000;28(2):89–96.
  • Tomás-Zapico C, Coto-Montes A. A proposed mechanism to explain the stimulatory effect of melatonin on antioxidative enzymes. J Pineal Res. 2005;39(2):99–104.
  • Naidu PS, Singh A, Kaur P, et al. Possible mechanism of action in melatonin attenuation of haloperidol-induced orofacial dyskinesia. Pharmacol Biochem Behav. 2003;74(3):641–648.
  • Pablos MI, Guerrero JM, Ortiz GG, et al. Both melatonin and a putative nuclear melatonin receptor agonist CGP 52608 stimulate glutathione peroxidase and glutathione reductase activities in mouse brain in vivo. Int J Prenatal Perinatal Psychol Med. 1997;9(4):441–447.
  • Hardeland R. Antioxidative protection by melatonin: multiplicity of mechanisms from radical detoxification to radical avoidance. Endocrine. 2005;27(2):119–130.
  • Esparza JL, Gómez M, Rosa Nogués M, et al. Melatonin reduces oxidative stress and increases gene expression in the cerebral cortex and cerebellum of aluminum-exposed rats. J Pineal Res. 2005;39(2):129–136.
  • Lu SC. Regulation of glutathione synthesis. Mol Aspects Med. 2009;30(1–2):42–59.
  • Srinivasan V, Spence DW, Pandi-Perumal SR, et al. Melatonin in mitochondrial dysfunction and related disorders. Int J Alzheimers Dis. 2011;2011:326320.
  • Teixeira A, Morfim MP, Cordova CAS, et al. Melatonin protects against pro-oxidant enzymes and reduces lipid peroxidation in distinct membranes induced by the hydroxyl and ascorbyl radicals and by peroxynitrite. J Pineal Res. 2003;35(4):262–268.
  • Loren P, Sánchez R, Arias ME, et al. Melatonin scavenger properties against oxidative and nitrosative stress: impact on gamete handling and in vitro embryo production in humans and other mammals. Int J Mol Sci. 2017;18(6):1119.
  • Reiter RJ, Tan DX, Terron MP, et al. Melatonin and its metabolites: new findings regarding their production and their radical scavenging actions. Acta Biochim Pol. 2007;54(1):1–9.
  • Dubocovich ML, Rivera-Bermudez MA, Gerdin MJ, et al. Molecular pharmacology, regulation and function of mammalian melatonin receptors. Front Biosci. 2003;8(4):d1093–d1108.
  • Zawilska JB, Skene DJ, Arendt J. Physiology and pharmacology of melatonin in relation to biological rhythms. Pharmacol Rep. 2009;61(3):383–410.
  • Becker-André M, Wiesenberg I, Schaeren-Wiemers N, et al. Pineal gland hormone melatonin binds and activates an orphan of the nuclear receptor superfamily. J Biol Chem. 1994;269(46):28531–28534.
  • Wiesenberg I, Missbach M, Carlberg C. The potential role of the transcription factor RZR/ROR as a mediator of nuclear melatonin signaling. Restor Neurol Neurosci. 1998;12(2–3):143–150.
  • Menendez-Pelaez A, Poeggeler B, Reiter RJ, et al. Nuclear localization of melatonin in different mammalian tissues: immunocytochemical and radioimmunoassay evidence. J Cell Biochem. 1993;53(4):373–382.
  • Montilla P, Cruz A, Padillo FJ, et al. Melatonin versus vitamin E as protective treatment against oxidative stress after extra-hepatic bile duct ligation in rats. J Pineal Res. 2001;31(2):138–144.
  • Jou MJ, Peng TI, Reiter RJ, et al. Visualization of the antioxidative effects of melatonin at the mitochondrial level during oxidative stress-induced apoptosis of rat brain astrocytes. J Pineal Res. 2004;37(1):55–70.
  • Martínez-Cruz F, Osuna C, Guerrero JM. Mitochondrial damage induced by fetal hyperphenylalaninemia in the rat brain and liver: its prevention by melatonin, vitamin E, and vitamin C. Neurosci Lett. 2006;392(1–2):1–4.
  • Rehman SU, Ikram M, Ullah N, et al. Neurological enhancement effects of melatonin against brain injury-induced oxidative stress, neuroinflammation, and neurodegeneration via AMPK/CREB signaling. Cells. 2019;8(7):760.
  • Reiter RJ, Tan DX, Manchester LC, et al. Melatonin and reproduction revisited. Biol Reprod. 2009;81(3):445–456.
  • Chattopadhyay S, Sahoo DK, Subudhi U, et al. Differential expression profiles of antioxidant enzymes and glutathione redox status in hyperthyroid rats: a temporal analysis. Comp Biochem Physiol C Toxicol Pharmacol. 2007;146(3):383–391.
  • Sahoo DK, Roy A, Bhanja S, et al. Hypothyroidism impairs antioxidant defence system and testicular physiology during development and maturation. Gen Comp Endocrinol. 2008;156(1):63–70.
  • Sahoo DK, Roy A, Chainy GB. Protective effects of vitamin E and curcumin on L-thyroxine-induced rat testicular oxidative stress. Chem Biol Interact. 2008;176(2–3):121–128.
  • Sahoo DK, Roy A. Compromised rat testicular antioxidant defence system by hypothyroidism before puberty. Int J Endocrinol. 2012;2012:article ID 637825.
  • Sahoo DK, Chainy GB. Tissue specific response of antioxidant defence systems of rat to experimentally-induced hyperthyroidism. Natl Acad Sci Lett. 2007;30(7–8):247–250.
  • Sahoo DK, Jena S, Chainy GB. Thyroid dysfunction and testicular redox status: an intriguing association. In: Oxidants, antioxidants and impact of the oxidative status in male reproduction. Cambridge (MA): Academic Press; 2019. p. 149–170.
  • Sahoo DK, Roy A, Bhanja S, et al. Experimental hyperthyroidism-induced oxidative stress and impairment of antioxidant defence system in rat testis. Indian J Exp Biol. 2005;43(11):1058–1067.
  • Mishra P, Paital B, Jena S, et al. Possible activation of NRF2 by vitamin E/curcumin against altered thyroid hormone induced oxidative stress via NFκB/AKT/mTOR/KEAP1 signalling in rat heart. Sci Rep. 2019;9(1):7408.
  • Kesar V. Thyroid hormones and oxidative stress. Indian J Med Biochem. 2017;21(1):58–61.
  • Mancini A, Di Segni C, Raimondo S, et al. Thyroid hormones, oxidative stress, and inflammation. Mediators Inflamm. 2016;2016:1.
  • Venditti P, Di Meo S. Thyroid hormone-induced oxidative stress. Cell Mol Life Sci. 2006;63(4):414–434.
  • Fernández-Vizarra E, Enriquez JA, Pérez-Martos A, et al. Mitochondrial gene expression is regulated at multiple levels and differentially in the heart and liver by thyroid hormones. Curr Genet. 2008;54(1):13–22.
  • Elnakish MT, Ahmed AA, Mohler PJ, et al. Role of oxidative stress in thyroid hormone-induced cardiomyocyte hypertrophy and associated cardiac dysfunction: an undisclosed story. Oxid Med Cell Longev. 2015;2015:1.
  • Ramandeep K, Kapil G, Harkiran K. Correlation of enhanced oxidative stress with altered thyroid profile: probable role in spontaneous abortion. Int J App Basic Med Res. 2017;7(1):20–25.
  • Velayeti J, Mansourian AR, Mojerloo M, et al. Evaluation of oxidative stress and thyroid hormone status in hemodialysis patients in Gorgan. Indian J Endocr Metab. 2016;20(3):348–353.
  • Pereira B, Rosa LF, Safi DA, et al. Control of superoxide dismutase, catalase and glutathione peroxidase activities in rat lymphoid organs by thyroid hormones. J Endocrinol. 1994;140(1):73–77.
  • Moro L, Marra E, Capuano F, et al. Thyroid hormone treatment of hypothyroid rats restores the regenerative capacity and the mitochondrial membrane permeability properties of the liver after partial hepatectomy. Endocrinology. 2004;145(11):5121–5128.
  • Subudhi U, Das K, Paital B, et al. Supplementation of curcumin and vitamin E enhances oxidative stress, but restores hepatic histoarchitecture in hypothyroid rats. Life Sci. 2009;84(11–12):372–379.
  • Resch U, Helsel G, Tatzber F, et al. Antioxidant status in thyroid dysfunction. Clin Chem Lab Med. 2002;40(11):1132–1134.
  • Duntas LH. Oxidants, antioxidants in physical exercise and relation to thyroid function. Horm Metab Res. 2005;37(9):572–576.
  • Kiya Y, Miura SI, Zhang B, et al. Effect of levothyroxine on total lipid profiles as assessed by analytical capillary isotachophoresis in a patient with hypothyroidism. Endocr J. 2006;53(6):865–868.
  • Gerenova J, Gadjeva V. Oxidative stress and antioxidant enzyme activities in patients with Hashimoto’s thyroiditis. Comp Clin Pathol. 2007;16(4):259–264.
  • Williams KV, Nayak S, Becker D, et al. Fifty years of experience with propylthiouracil-associated hepatotoxicity: what have we learned? J Clin Endocrinol Metab. 1997;82(6):1727–1733.
  • Subudhi U, Das K, Paital B, et al. Alleviation of enhanced oxidative stress and oxygen consumption of L-thyroxine induced hyperthyroid rat liver mitochondria by vitamin E and curcumin. Chem Biol Interact. 2008;173(2):105–114.
  • Subudhi U, Chainy GB. Expression of hepatic antioxidant genes in L-thyroxine-induced hyperthyroid rats: regulation by vitamin E and curcumin. Chem Biol Interact. 2010;183(2):304–316.
  • Zingg JM. Vitamin E: an overview of major research directions. Mol Aspects Med. 2007;28(5–6):400–422.
  • Aggarwal BB, Harikumar KB. Potential therapeutic effects of curcumin, the anti-inflammatory agent, against neurodegenerative, cardiovascular, pulmonary, metabolic, autoimmune and neoplastic diseases. Int J Biochem Cell Biol. 2009;41(1):40–59.
  • El-Kashlan AM, Nooh MM, Hassan WA, et al. Therapeutic potential of date palm pollen for testicular dysfunction induced by thyroid disorders in male rats. Plos One. 2015;10(10):e0139493.
  • Gulcelik MA, Gulcelik NE, Dinc S, et al. The incidence of hyperthyroidism in patients with thyroid cancer in an area of iodine deficiency. J Surg Oncol. 2006;94(1):35–39.
  • Das K, Chainy GB. Modulation of rat liver mitochondrial antioxidant defence system by thyroid hormone. Biochim Biophys Acta. 2001;1537(1):1–13.
  • Das K, Chainy GB. Thyroid hormone influences antioxidant defense system in adult rat brain. Neurochem Res. 2004;29(9):1755–1766.
  • Jena S, Chainy GB. Regulation of expression of antioxidant enzymes by vitamin E and curcumin in L-thyroxine-induced oxidative stress in rat renal cortex. Mol Biol Rep. 2011;38(2):1047–1054.
  • Kobayashi K. Role of catecholamine signaling in brain and nervous system functions: new insights from mouse molecular genetic study. J Investig Dermatol Symp Proc. 2001;6(1):115–121.
  • Álvarez-Diduk R, Galano A. Adrenaline and noradrenaline: protectors against oxidative stress or molecular targets? J Phys Chem B. 2015;119(8):3479–3491.
  • Behonick GS, Novak MJ, Nealley EW, et al. Toxicology update: the cardiotoxicity of the oxidative stress metabolites of catecholamines (aminochromes). J Appl Toxicol. 2001;21(S1):S15–S22.
  • de Araújo RF, Martins DB, Borba MA. Oxidative stress and disease. In: A Master Regulator of oxidative stress-the transcription factor Nrf2. London: IntechOpen; 2016.
  • Dhalla NS, Adameova A, Kaur M. Role of catecholamine oxidation in sudden cardiac death. Fundam Clin Pharmacol. 2010;24(5):539–546.
  • Tappia PS, Hata T, Hozaima L, et al. Role of oxidative stress in catecholamine-induced changes in cardiac sarcolemmal Ca2+ transport. Arch Biochem Biophys. 2001;387(1):85–92.
  • Singal PK, Khaper N, Palace V, et al. The role of oxidative stress in the genesis of heart disease. Cardiovasc Res. 1998;40(3):426–432.
  • Zelinka T, Petrák O, Turková H, et al. High incidence of cardiovascular complications in pheochromocytoma. Horm Metab Res. 2012;44(5):379–384.
  • Turková H, Petrák O, Skrha J, et al. Pheochromocytoma and markers of oxidative stress. Physiol Res. 2013;62(3):331–335.
  • Gayen JR, Zhang K, RamachandraRao SP, et al. Role of reactive oxygen species in hyperadrenergic hypertension: biochemical, physiological, and pharmacological evidence from targeted ablation of the chromogranin A (Chga) gene. Circ Cardiovasc Genet. 2010;3(5):414–425.
  • Gavrilović L, Stojiljković V, Popović N, et al. Animal models for chronic stress-induced oxidative stress in the spleen: the role of exercise and catecholaminergic system. In: Experimental animal models of human diseases-an effective therapeutic strategy. London: IntechOpen; 2018. p. 238–310.
  • Graziano TS, Closs P, Poppi T, et al. Catecholamines promote the expression of virulence and oxidative stress genes in Porphyromonas gingivalis. J Periodont Res. 2014;49(5):660–669.
  • Baynes JW, Thorpe SR. Role of oxidative stress in diabetic complications: a new perspective on an old paradigm. Diabetes. 1999;48(1):1–9.
  • Hurrle S, Hsu WH. The etiology of oxidative stress in insulin resistance. Biomed J. 2017;40(5):257–262.
  • Ho E, Bray TM. Antioxidants, NFκB activation, and diabetogenesis. Proc Soc Exp Biol Med. 1999;222(3):205–213.
  • Maritim AC, Sanders RA, Watkins JB. Diabetes, oxidative stress, and antioxidants: a review. J Biochem Mol Toxicol. 2003;17(1):24–38.
  • Kangralkar VA, Patil SD, Bandivadekar RM. Oxidative stress and diabetes: a review. Int J Pharm Appl. 2010;1(1):38–45.
  • Matough FA, Budin SB, Hamid ZA, et al. The role of oxidative stress and antioxidants in diabetic complications. Sultan Qaboos Univ Med J. 2012;12(1):5–18.
  • Maciejczyk M, Żebrowska E, Chabowski A. Insulin resistance and oxidative stress in the brain: what’s new? Int J Mol Sci. 2019;20(4):874.
  • Park YJ, Woo M. Pancreatic β cells: gatekeepers of type 2 diabetes. J Cell Biol. 2019;218(4):1094–1095.
  • Maiese K. New insights for oxidative stress and diabetes mellitus. Oxid Med Cell Longev. 2015;2015:1.
  • Asmat U, Abad K, Ismail K. Diabetes mellitus and oxidative stress – a concise review. Saudi Pharm J. 2016;24(5):547–553.
  • Sato Y, Hotta N, Sakamoto N, et al. Lipid peroxide level in plasma of diabetic patients. Biochem Med. 1979;21(1):104–107.
  • Sharma A, Kharb S, Chugh SN, et al. Evaluation of oxidative stress before and after control of glycemia and after vitamin E supplementation in diabetic patients. Metabolism. 2000;49(2):160–162.
  • Kakkar R, Kalra J, Mantha SV, et al. Lipid peroxidation and activity of antioxidant enzymes in diabetic rats. Mol Cell Biochem. 1995;151(2):113–119.
  • Bigagli E, Lodovici M. Circulating oxidative stress biomarkers in clinical studies on Type 2 diabetes and its complications. Oxid Med Cell Longev. 2019;2019:1.
  • Ito F, Sono Y, Ito T. Measurement and clinical significance of lipid peroxidation as a biomarker of oxidative stress: oxidative stress in diabetes, atherosclerosis, and chronic inflammation. Antioxidants. 2019;8(3):72.
  • Cakatay U, Telci A, Salman S, et al. Oxidative protein damage in type I diabetic patients with and without complications. Endocr Res. 2000;26(3):365–379.
  • Bollineni RC, Fedorova M, Blüher M, et al. Carbonylated plasma proteins as potential biomarkers of obesity induced type 2 diabetes mellitus. J Proteome Res. 2014;13(11):5081–5093.
  • Telci A, Cakatay U, Kayali R, et al. Oxidative protein damage in plasma of type 2 diabetic patients. Horm Metab Res. 2000;32(01):40–43.
  • Balbi ME, Tonin FS, Mendes AM, et al. Antioxidant effects of vitamins in type 2 diabetes: a meta-analysis of randomized controlled trials. Diabetol Metab Syndr. 2018;10(1):18.
  • Ceriello A, Bortolotti N, Crescentini A, et al. Antioxidant defences are reduced during the oral glucose tolerance test in normal and non-insulin-dependent diabetic subjects. Eur J Clin Invest. 1998;28(4):329–333.
  • Aguirre F, Martin I, Grinspon D, et al. Oxidative damage, plasma antioxidant capacity, and glucemic control in elderly NIDDM patients. Free Radic Biol Med. 1998;24(4):580–585.
  • Tüzün S, Girgin FK, Sözmen EY, et al. Antioxidant status in experimental type 2 diabetes mellitus: effects of glibenclamide and glipizide on various rat tissues. Exp Toxicol Pathol. 1999;51(4–5):436–441.
  • Di Domenico M, Pinto F, Quagliuolo L, et al. The role of oxidative stress and hormones in controlling obesity. Front Endocrinol. 2019;10:540.
  • Fayez S, Aziz A, Rehan M. Insulin resistance is triggered by oxidative stress in mildly obese men. J Am Sci. 2010;6(9):604–611.
  • Hayden MR, Tyagi SC. Islet redox stress: the manifold toxicities of insulin resistance, metabolic syndrome and amylin derived islet amyloid in type 2 diabetes mellitus. JOP. 2002;3(4):86–108.
  • Koyama M, Wada RI, Sakuraba H, et al. Accelerated loss of islet β cells in sucrose-fed Goto-Kakizaki rats, a genetic model of non-insulin-dependent diabetes mellitus. Am J Pathol. 1998;153(2):537–545.
  • Janciauskiene S, Ahrén B. Fibrillar islet amyloid polypeptide differentially affects oxidative mechanisms and lipoprotein uptake in correlation with cytotoxicity in two insulin-producing cell lines. Biochem Biophys Res Commun. 2000;267(2):619–625.
  • Konarkowska B, Aitken JF, Kistler J, et al. Thiol reducing compounds prevent human amylin-evoked cytotoxicity. FEBS J. 2005;272(19):4949–4959.
  • Zraika S, Hull RL, Udayasankar J, et al. Oxidative stress is induced by islet amyloid formation and time-dependently mediates amyloid-induced beta cell apoptosis. Diabetologia. 2009;52(4):626–635.
  • Acharya JD, Ghaskadbi SS. Islets and their antioxidant defense. Islets. 2010;2(4):225–235.
  • Woodcroft KJ, Hafner MS, Novak RF. Insulin signaling in the transcriptional and posttranscriptional regulation of CYP2E1 expression. Hepatology. 2002;35(2):263–273.
  • Farese RV. Insulin-sensitive phospholipid signaling systems and glucose transport. Update II. Exp Biol Med (Maywood). 2001;226(4):283–295.
  • Kim SK, Woodcroft KJ, Kim SG, et al. Insulin and glucagon signaling in regulation of microsomal epoxide hydrolase expression in primary cultured rat hepatocytes. Drug Metab Dispos. 2003;31(10):1260–1268.
  • Bashan N, Kovsan J, Kachko I, et al. Positive and negative regulation of insulin signaling by reactive oxygen and nitrogen species. Physiol Rev. 2009;89(1):27–71.
  • Keane KN, Cruzat VF, Carlessi R, et al. Molecular events linking oxidative stress and inflammation to insulin resistance and β-cell dysfunction. Oxid Med Cell Longev. 2015;2015:1.
  • Schmid E, Hotz-Wagenblatt AG, Hacj V, et al. Phosphorylation of the insulin receptor kinase by phosphocreatine in combination with hydrogen peroxide: the structural basis of redox priming. Faseb J. 1999;13(12):1491–1500.
  • Leloup C, Tourrel-Cuzin C, Magnan C, et al. Mitochondrial reactive oxygen species are obligatory signals for glucose-induced insulin secretion. Diabetes. 2009;58(3):673–681.
  • Kaneto H, Kajimoto Y, Miyagawa JI, et al. Beneficial effects of antioxidants in diabetes: possible protection of pancreatic beta-cells against glucose toxicity. Diabetes. 1999;48(12):2398–2406.
  • Andersson AK, Sandler S. Melatonin protects against streptozotocin, but not interleukin‐1β-induced damage of rodent pancreatic β‐cells. J Pineal Res. 2001;30(3):157–165.
  • Bruce CR, Carey AL, Hawley JA, et al. Intramuscular heat shock protein 72 and heme oxygenase-1 mRNA are reduced in patients with type 2 diabetes: evidence that insulin resistance is associated with a disturbed antioxidant defense mechanism. Diabetes. 2003;52(9):2338–2345.
  • Chen X, Scholl TO, Leskiw MJ, et al. Association of glutathione peroxidase activity with insulin resistance and dietary fat intake during normal pregnancy. J Clin Endocrinol Metab. 2003;88(12):5963–5968.
  • Jonassen AK, Sack MN, Mjøs OD, et al. Myocardial protection by insulin at reperfusion requires early administration and is mediated via Akt and p70S6 kinase cell-survival signaling. Circ Res. 2001;89(12):1191–1198.
  • Orzechowski A. Justification for antioxidant preconditioning (or how to protect insulin-mediated actions under oxidative stress). J Biosci. 2003;28(1):39–49.
  • Boehm JE, Chaika OV, Lewis RE. Rac-dependent anti-apoptotic signaling by the insulin receptor cytoplasmic domain. J Biol Chem. 1999;274(40):28632–28636.
  • Zhang L, Xing GQ, Barker JL, et al. Alpha-lipoic acid protects rat cortical neurons against cell death induced by amyloid and hydrogen peroxide through the Akt signalling pathway. Neurosci Lett. 2001;312(3):125–128.
  • Kim SK, Abdelmegeed MA, Novak RF. Identification of the insulin signaling cascade in the regulation of alpha-class glutathione S-transferase expression in primary cultured rat hepatocytes. J Pharmacol Exp Ther. 2006;316(3):1255–1261.
  • Kim SK, Woodcroft KJ, Khodadadeh SS, et al. Insulin signaling regulates γ-glutamylcysteine ligase catalytic subunit expression in primary cultured rat hepatocytes. J Pharmacol Exp Ther. 2004;311(1):99–108.
  • Duarte AI, Santos MS, Oliveira CR, et al. Insulin neuroprotection against oxidative stress in cortical neurons. Involvement of uric acid and glutathione antioxidant defenses. Free Radic Biol Med. 2005;39(7):876–889.
  • Geraldes P, Yagi K, Ohshiro Y, et al. Selective regulation of heme oxygenase-1 expression and function by insulin through IRS1/phosphoinositide 3-kinase/Akt-2 pathway. J Biol Chem. 2008;283(49):34327–34336.
  • Wang X, Wu H, Chen H, et al. Does insulin bolster antioxidant defenses via the extracellular signal–regulated kinases-protein kinase B-nuclear factor erythroid 2 p45-related Factor 2 pathway? Antioxid Redox Signal. 2012;16(10):1061–1070.
  • Accili D, Arden KC. FoxOs at the crossroads of cellular metabolism, differentiation, and transformation. Cell. 2004;117(4):421–426.
  • Kousteni S. FoxO1: a molecule for all seasons. J Bone Miner Res. 2011;26(5):912–917.
  • Lu SC, Garcia-Ruiz C, Kuhlenkamp J, et al. Hormonal regulation of glutathione efflux. J Biol Chem. 1990;265(27):16088–16095.
  • Patarrão RS, Lautt WW, Macedo MP. Acute glucagon induces postprandial peripheral insulin resistance. Plos One. 2015;10(5):e0127221.
  • Harbrecht BG, Perpetua M, Fulmer M, et al. Glucagon regulates hepatic inducible nitric oxide synthesis in vivo. Shock. 2004;22(2):157–162.
  • Bloch K, Shichman E, Vorobeychik M, et al. Catalase expression in pancreatic alpha cells of diabetic and non-diabetic mice. Histochem Cell Biol. 2007;127(2):227–232.
  • Kim SK, Woodcroft KJ, Novak RF. Insulin and glucagon regulation of glutathione S-transferase expression in primary cultured rat hepatocytes. J Pharmacol Exp Ther. 2003;305(1):353–361.
  • Hong J, Jeppesen PB, Nordentoft I, et al. Fatty acid-induced effect on glucagon secretion is mediated via fatty acid oxidation. Diabetes Metab Res Rev. 2007;23(3):202–210.
  • Lee SC, Robson-Doucette CA, Wheeler MB. Uncoupling protein 2 regulates reactive oxygen species formation in islets and influences susceptibility to diabetogenic action of streptozotocin. J Endocrinol. 2009;203(1):33–43.
  • Su JY, Li HL, Yang WY, et al. Role and mechanism of uncoupling protein 2 on the fatty acid-induced dysfunction of pancreatic alpha cellsin vitro. Chin. Med. J. 2010;123(17):2416–2423.
  • Alquicer G, Kodrík D, Krishnan N, et al. Activation of insect anti-oxidative mechanisms by mammalian glucagon. Comp Biochem Physiol B Biochem Mol Biol. 2009;152(3):226–233.
  • Bjelaković G, Beninati S, Pavlović D, et al. Glucocorticoids and oxidative stress. J Basic Clin Physiol Pharmacol. 2007;18(2):115–127.
  • Simmons WW, Ungureanu-Longrois D, Smith GK, et al. Glucocorticoids regulate inducible nitric oxide synthase by inhibiting tetrahydrobiopterin synthesis and L-arginine transport. J Biol Chem. 1996;271(39):23928–23937.
  • Sugino N, Hirosawa-Takamori M, Zhong L, et al. Hormonal regulation of copper–zinc superoxide dismutase and manganese superoxide dismutase messenger ribonucleic acid in the rat corpus luteum: induction by prolactin and placental lactogens. Biol Reprod. 1998;59(3):599–605.
  • Sato H, Takahashi T, Sumitani K, et al. Glucocorticoid generates ROS to induce oxidative injury in the hippocampus, leading to impairment of cognitive function of rats. J Clin Biochem Nutr. 2010;47(3):224–232.
  • Spiers JG, Chen HJ, Sernia C, et al. Activation of the hypothalamic-pituitary-adrenal stress axis induces cellular oxidative stress. Front Neurosci. 2014;8:456.
  • Arima M, Kumai T, Asoh K, et al. Effects of antenatal dexamethasone on antioxidant enzymes and nitric oxide synthase in the rat lung. J Pharmacol Sci. 2008;106(2):242–248.
  • Birnie-Gauvin K, Peiman KS, Larsen MH, et al. Short-term and long-term effects of transient exogenous cortisol manipulation on oxidative stress in juvenile brown trout. J Exp Biol. 2017;220(9):1693–1700.
  • Costantini D, Marasco V, Møller AP. A meta-analysis of glucocorticoids as modulators of oxidative stress in vertebrates. J Comp Physiol B, Biochem Syst Environ Physiol. 2011;181(4):447–456.
  • Weinberg-Shukron A, Abu-Libdeh A, Zhadeh F, et al. Combined mineralocorticoid and glucocorticoid deficiency is caused by a novel founder nicotinamide nucleotide transhydrogenase mutation that alters mitochondrial morphology and increases oxidative stress. J Med Genet. 2015;52(9):636–641.
  • Kotlyar E, Vita JA, Winter MR, et al. The relationship between aldosterone, oxidative stress, and inflammation in chronic, stable human heart failure. J Card Fail. 2006;12(2):122–127.
  • Lang F. On the pleotropic actions of mineralocorticoids. Nephron Physiol. 2014;128(1–2):1–7.
  • Nishiyama A, Yao L, Nagai Y, et al. Possible contributions of reactive oxygen species and mitogen-activated protein kinase to renal injury in aldosterone/salt-induced hypertensive rats. Hypertension. 2004;43(4):841–848.
  • Patni H, Mathew JT, Luan L, et al. Aldosterone promotes proximal tubular cell apoptosis: role of oxidative stress. Am J Physiol Renal Physiol. 2007;293(4):F1065–F1071.
  • Iwashima F, Yoshimoto T, Minami I, et al. Aldosterone induces superoxide generation via Rac1 activation in endothelial cells. Endocrinology. 2008;149(3):1009–1014.
  • Tesch GH, Young MJ. Mineralocorticoid receptor signaling as a therapeutic target for renal and cardiac fibrosis. Front Pharmacol. 2017;8:313.
  • Queisser N, Oteiza PI, Link S, et al. Aldosterone activates transcription factor Nrf2 in kidney cells both in vitro and in vivo. Antioxid Redox Signal. 2014;21(15):2126–2142.
  • Ha BJ, Lee SH, Kim HJ, et al. The role of Salicornia herbacea in ovariectomy-induced oxidative stress. Biol Pharm Bull. 2006;29(7):1305–1309.
  • Muñoz-Castañeda JR, Muntané J, Herencia C, et al. Ovariectomy exacerbates oxidative stress and cardiopathy induced by adriamycin. Gynecol Endocrinol. 2006;22(2):74–79.
  • Pajović SB, Saičić ZS. Modulation of antioxidant enzyme activities by sexual steroid hormones. Physiol Res. 2008;57(6):801–811.
  • Pajović S, Nikezić G, Martinović JV. Effects of ovarian steroids on superoxide dismutase activity in the rat brain. Experientia. 1993;49(1):73–75.
  • Pajović S, Saičić ZS, Spasić MB, et al. Effect of progesterone and estradiol benzoate on superoxide dismutase activity in the brain of male rats. Experientia. 1996;52(3):221–224.
  • Kume-Kick J, Ferris DC, Russo-Menna I, et al. Enhanced oxidative stress in female rat brain after gonadectomy. Brain Res. 1996;738(1):8–14.
  • Pajović SB, Saićić ZS, Spasić MB, et al. The effect of ovarian hormones on antioxidant enzyme activities in the brain of male rats. Physiol Res. 2003;52(2):189–194.
  • Shahrokhi N, Haddad MK, Joukar S, et al. Neuroprotective antioxidant effect of sex steroid hormones in traumatic brain injury. Pak J Pharm Sci. 2012;25(1):219–225.
  • Zarida H, Ngah WW, Khalid BA. Effect of gonadectomy and sex hormones replacement on glutathione related enzymes in rats. Asia Pac J Pharmacol. 1993;8(4):223–230.
  • Huh K, Shin US, Choi JW, et al. Effect of sex hormones on lipid peroxidation in rat liver. Arch Pharm Res. 1994;17(2):109–114.
  • Azevedo RB, Lacava ZG, Miyasaka CK, et al. Regulation of antioxidant enzyme activities in male and female rat macrophages by sex steroids. Braz J Med Biol Res. 2001;34(5):683–687.
  • Adler I, Tulassay Z, Stark J, et al. The effect of certain steroid hormones on the expression of genes involved in the metabolism of free radicals. Gynecol Endocrinol. 2012;28(11):912–916.
  • Bolton JL, Thatcher GR. Potential mechanisms of estrogen quinone carcinogenesis. Chem Res Toxicol. 2008;21(1):93–101.
  • Gustafsson JA. What pharmacologists can learn from recent advances in estrogen signalling. Trends Pharmacol Sci. 2003;24(9):479–485.
  • Delrobaei F, Fatemi I, Shamsizadeh A, et al. Ascorbic acid attenuates cognitive impairment and brain oxidative stress in ovariectomized mice. Pharmacol Rep. 2019;71(1):133–138.
  • Yazğan Y, Nazıroğlu M. Ovariectomy-induced mitochondrial oxidative stress, apoptosis, and calcium ion influx through TRPA1, TRPM2, and TRPV1 are prevented by 17β-estradiol, tamoxifen, and raloxifene in the hippocampus and dorsal root ganglion of rats. Mol Neurobiol. 2017;54(10):7620–7638.
  • Da Silva Morrone MD, Schnorr CE, Behr GA, et al. Oral administration of curcumin relieves behavioral alterations and oxidative stress in the frontal cortex, hippocampus, and striatum of ovariectomized Wistar rats. J Nutr Biochem. 2016;32:181–188.
  • Hao F, Gu Y, Tan X, et al. Estrogen replacement reduces oxidative stress in the rostral ventrolateral medulla of ovariectomized rats. Oxid Med Cell Longev. 2016;2016:1.
  • Yu N, Song N, Liu CY, et al. The estrogen-like protective effect of Lycium barbarum polysaccharides in reducing oxidative stress on myocardial cells from ovariectomized rats. Mol Med Rep. 2019;19(3):2271–2278.
  • Costa TJ, Ceravolo GS, dos Santos RA, et al. Association of testosterone with estrogen abolishes the beneficial effects of estrogen treatment by increasing ROS generation in aorta endothelial cells. Am J Physiol Heart Circ Physiol. 2015;308(7):H723–H732.
  • Bellanti F, Matteo M, Rollo T, et al. Sex hormones modulate circulating antioxidant enzymes: impact of estrogen therapy. Redox Biol. 2013;1(1):340–346.
  • Sánchez-Rodríguez MA, Zacarías-Flores M, Arronte-Rosales A, et al. Association between hot flashes severity and oxidative stress among Mexican postmenopausal women: a cross-sectional study. Plos One. 2019;14(9):e0214264.
  • Azizieh FY, Shehab D, Al Jarallah K, et al. Circulatory pattern of cytokines, adipokines and bone markers in postmenopausal women with low BMD. J Inflamm Res. 2019;12:99–108.
  • Niki E, Nakano M. Estrogens as antioxidants. Methods Enzymol. 1990;186:330–333.
  • Viña J, Borrás C, Gambini J, et al. Why females live longer than males: control of longevity by sex hormones. Sci Aging Knowledge Environ. 2005;2005(23):pe17–pe17.
  • Torres MJ, Ryan TE, Lin CT, et al. Impact of 17β-estradiol on complex I kinetics and H2O2 production in liver and skeletal muscle mitochondria. J Biol Chem. 2018;293(43):16889–16898.
  • Muñoz-Castañeda JR, Túnez I, Muñoz MC, et al. Effect of catecholestrogen administration during adriamycin-induced cardiomyopathy in ovariectomized rat. Free Radic Res. 2005;39(9):943–948.
  • Bokov AF, Ko D, Richardson A. The effect of gonadectomy and estradiol on sensitivity to oxidative stress. Endocr Res. 2009;34(1–2):43–58.
  • Michos C, Kiortsis DN, Evangelou A, et al. Antioxidant protection during the menstrual cycle: the effects of estradiol on ascorbic–dehydroascorbic acid plasma levels and total antioxidant plasma status in eumenorrhoic women during the menstrual cycle. Acta Obstet Gynecol Scand. 2006;85(8):960–965.
  • Massafra C, Gioia D, De Felice C, et al. Effects of estrogens and androgens on erythrocyte antioxidant superoxide dismutase, catalase and glutathione peroxidase activities during the menstrual cycle. J Endocrinol. 2000;167(3):447–452.
  • Persky AM, Green PS, Stubley L, et al. Protective effect of estrogens against oxidative damage to heart and skeletal muscle in vivo and in vitro. Proc Soc Exp Biol Med. 2000;223(1):59–66.
  • Díaz-Flores M, Baiza-Gutman LA, Pedrón NN, et al. Uterine glutathione reductase activity: modulation by estrogens and progesterone. Life Sci. 1999;65(23):2481–2488.
  • Wing LY, Chen YC, Shih YY, et al. Effects of oral estrogen on aortic ROS-generating and -scavenging enzymes and atherosclerosis in apoE-deficient mice. Exp Biol Med (Maywood). 2009;234(9):1037–1046.
  • Özgönül M, Öge A, Sezer ED, et al. The effects of estrogen and raloxifene treatment on antioxidant enzymes in brain and liver of ovarectomized female rats. Endocr Res. 2003;29(2):183–189.
  • Hamden K, Carreau S, Ellouz F, et al. Protective effect of 17β-estradiol on oxidative stress and liver dysfunction in aged male rats. J Physiol Biochem. 2007;63(3):195–201.
  • Barron AM, Fuller SJ, Verdile G, et al. Reproductive hormones modulate oxidative stress in Alzheimer’s disease. Antioxid Redox Signal. 2006;8(11–12):2047–2059.
  • Simpkins JW, Yang SH, Liu R, et al. Estrogen-like compounds for ischemic neuroprotection. Stroke. 2004;35(11):2648–2651.
  • Ayres S, Tang M, Subbiah MT. Estradiol-17β as an antioxidant: some distinct features when compared with common fat-soluble antioxidants. J Lab Clin Med. 1996;128(4):367–375.
  • Behl C, Skutella T, Lezoualc’h F, et al. Neuroprotection against oxidative stress by estrogens: structure–activity relationship. Mol Pharmacol. 1997;51(4):535–541.
  • Garcia-Segura LM, Azcoitia I, DonCarlos LL. Neuroprotection by estradiol. Prog Neurobiol. 2001;63(1):29–60.
  • Brann DW, Dhandapani K, Wakade C, et al. Neurotrophic and neuroprotective actions of estrogen: basic mechanisms and clinical implications. Steroids. 2007;72(5):381–405.
  • Prokai L, Simpkins JW. Structure–nongenomic neuroprotection relationship of estrogens and estrogen-derived compounds. Pharmacol Ther. 2007;114(1):1–12.
  • Moosmann B, Behl C. The antioxidant neuroprotective effects of estrogens and phenolic compounds are independent from their estrogenic properties. Proc Natl Acad Sci U S A. 1999;96(16):8867–8872.
  • Mense SM, Remotti F, Bhan A, et al. Estrogen-induced breast cancer: alterations in breast morphology and oxidative stress as a function of estrogen exposure. Toxicol Appl Pharmacol. 2008;232(1):78–85.
  • Zhao C, Dahlman-Wright K, Gustafsson JÅ. Estrogen signaling via estrogen receptor β. J Biol Chem. 2010;285(51):39575–39579.
  • Huang Y, Li X, Muyan M. Estrogen receptors similarly mediate the effects of 17β-estradiol on cellular responses but differ in their potencies. Endocrine. 2011;39(1):48–61.
  • Miró AM, Sastre-Serra J, Pons DG, et al. 17β-estradiol regulates oxidative stress in prostate cancer cell lines according to ERalpha/ERbeta ratio. J Steroid Biochem Mol Biol. 2011;123(3–5):133–139.
  • Nadal-Serrano M, Sastre-Serra J, Pons DG, et al. The ERalpha/ERbeta ratio determines oxidative stress in breast cancer cell lines in response to 17beta-estradiol. J Cell Biochem. 2012;113(10):3178–3185.
  • Badeau M, Adlercreutz H, Kaihovaara P, et al. Estrogen A-ring structure and antioxidative effect on lipoproteins. J Steroid Biochem Mol Biol. 2005;96(3–4):271–278.
  • Kagan VE, Tyurina YY. Recycling and redox cycling of phenolic antioxidants. Annals NY Acad Sci. 1998;854(1 TOWARDS PROLO):425–434.
  • Prokai L, Oon SM, Prokai-Tatrai K, et al. Synthesis and biological evaluation of 17β-alkoxyestra-1, 3, 5 (10)-trienes as potential neuroprotectants against oxidative stress. J Med Chem. 2001;44(1):110–114.
  • Prokai L, Prokai-Tatrai K, Perjési P, et al. Mechanistic insights into the direct antioxidant effects of estrogens. Drug Dev Res. 2005;66(2):118–125.
  • Prokai-Tatrai K, Perjesi P, Rivera-Portalatin NM, et al. Mechanistic investigations on the antioxidant action of a neuroprotective estrogen derivative. Steroids. 2008;73(3):280–288.
  • Mendelsohn ME, Karas RH. The protective effects of estrogen on the cardiovascular system. N Engl J Med. 1999;340(23):1801–1811.
  • Strehlow K, Rotter S, Wassmann S, et al. Modulation of antioxidant enzyme expression and function by estrogen. Circ Res. 2003;93(2):170–177.
  • Baltgalvis KA, Greising SM, Warren GL, et al. Estrogen regulates estrogen receptors and antioxidant gene expression in mouse skeletal muscle. Plos One. 2010;5(4):e10164.
  • Lundholm L, Putnik M, Otsuki M, et al. Effects of estrogen on gene expression profiles in mouse hypothalamus and white adipose tissue: target genes include glutathione peroxidase 3 and cell death-inducing DNA fragmentation factor, alpha-subunit-like effector A. J Endocrinol. 2008;196(3):547–557.
  • Deroo BJ, Hewitt SC, Peddada SD, et al. Estradiol regulates the thioredoxin antioxidant system in the mouse uterus. Endocrinology. 2004;145(12):5485–5492.
  • MohanKumar SM, Kasturi BS, Shin AC, et al. Chronic estradiol exposure induces oxidative stress in the hypothalamus to decrease hypothalamic dopamine and cause hyperprolactinemia. Am J Physiol Regul Integr Comp Physiol. 2011;300(3):R693–R699.
  • Laloraya M, Jain S, Thomas M, et al. Estrogen surge: a regulatory switch for superoxide radical generation at implantation. Biochem Mol Biol Int. 1996;39(5):933–940.
  • Bruemmer JE, Rueda RR, Hawkins BF, et al. Steady state levels of mRNA encoding manganese superoxide dismutase (MnSOD), copper zinc superoxide dismutase (Cu/ZnSOD), catalase (CAT) and glutathione peroxidase (GSHPx) in granulosa cells of preovulatory follicles. Biol Reprod. 1996. 54, 163–163.
  • Singh D, Sharma MK, Pandey RS. Changes in superoxide dismutase activity and estradiol-17 beta content in follicles of different sizes from ruminants. Indian J Exp Biol. 1998;36(4):358–360.
  • Al-Gubory KH, Bolifraud P, Garrel C. Regulation of key antioxidant enzymatic systems in the sheep endometrium by ovarian steroids. Endocrinology. 2008;149(9):4428–4434.
  • Barbacanne MA, Rami J, Michel JB, et al. Estradiol increases rat aorta endothelium-derived relaxing factor (EDRF) activity without changes in endothelial NO synthase gene expression: possible role of decreased endothelium-derived superoxide anion production. Cardiovasc Res. 1999;41(3):672–681.
  • Nakazono K, Watanabe N, Matsuno K, et al. Does superoxide underlie the pathogenesis of hypertension? Proc Natl Acad Sci USA. 1991;88(22):10045–10048.
  • Barp J, Araújo AS, Fernandes TR, et al. Myocardial antioxidant and oxidative stress changes due to sex hormones. Braz J Med Biol Res. 2002;35(9):1075–1081.
  • Nirmalan PK, Robin AL, Katz J, et al. Risk factors for age related cataract in a rural population of southern India: the Aravind comprehensive eye study. Br J Ophthalmol. 2004;88(8):989–994.
  • Klein BE. Lens opacities in women in Beaver Dam, Wisconsin: is there evidence of an effect of sex hormones? Trans Am Ophthalmol Soc. 1993;91:517–544.
  • McCarty CA, Mukesh BN, Fu CL, et al. The epidemiology of cataract in Australia. Am J Ophthalmol. 1999;128(4):446–465.
  • Celojevic D, Petersen A, Karlsson JO, et al. Effects of 17β-estradiol on proliferation, cell viability and intracellular redox status in native human lens epithelial cells. Mol Vis. 2011;17:1987–1996.
  • Hernández-Rabaza V, López-Pedrajas R, Almansa I. Progesterone, lipoic acid, and sulforaphane as promising antioxidants for retinal diseases: a review. Antioxidants. 2019;8(3):53.
  • Cai W, Zhu Y, Furuya K, et al. Two different molecular mechanisms underlying progesterone neuroprotection against ischemic brain damage. Neuropharmacology. 2008;55(2):127–138.
  • Stein DG, Wright DW, Kellermann AL. Does progesterone have neuroprotective properties? Ann Emerg Med. 2008;51(2):164–172.
  • Ozacmak VH, Sayan H. The effects of 17beta estradiol, 17alpha estradiol and progesterone on oxidative stress biomarkers in ovariectomized female rat brain subjected to global cerebral ischemia. Physiol Res. 2009;58(6):909–912.
  • He L, Yang H, Zhai LD, et al. A preliminary study on progesterone antioxidation in promoting learning and memory of young ovariectomized mice. Arch Med Sci. 2011;7(3):397–404.
  • Schumacher M, Akwa Y, Guennoun R, et al. Steroid synthesis and metabolism in the nervous system: trophic and protective effects. J Neurocytol. 2000;29(5/6):307–326.
  • Zampieri S, Mellon SH, Butters TD, et al. Oxidative stress in NPC1 deficient cells: protective effect of allopregnanolone. J Cell Mol Med. 2009;13(9b):3786–3796.
  • Chainy GB, Samantaray S, Samanta L. Testosterone-induced changes in testicular antioxidant system. Andrologia. 2009;29(6):343–349.
  • Aydilek N, Aksakal M, Karakılçık AZ. Effects of testosterone and vitamin E on the antioxidant system in rabbit testis. Andrologia. 2004;36(5):277–281.
  • Ahlbom E, Prins GS, Ceccatelli S. Testosterone protects cerebellar granule cells from oxidative stress-induced cell death through a receptor mediated mechanism. Brain Res. 2001;892(2):255–262.
  • Tam NN, Gao Y, Leung YK, et al. Androgenic regulation of oxidative stress in the rat prostate: involvement of NAD (P) H oxidases and antioxidant defense machinery during prostatic involution and regrowth. Am J Pathol. 2003;163(6):2513–2522.
  • Yan W, Kang Y, Ji X, et al. Testosterone upregulates the expression of mitochondrial ND1 and ND4 and alleviates the oxidative damage to the nigrostriatal dopaminergic system in orchiectomized rats. Oxid Med Cell Longev. 2017;2017:1.
  • Rovira-Llopis S, Bañuls C, de Marañon AM, et al. Low testosterone levels are related to oxidative stress, mitochondrial dysfunction and altered subclinical atherosclerotic markers in type 2 diabetic male patients. Free Radic Biol Med. 2017;108:155–162.
  • Ripple MO, Henry WF, Rago RP, et al. Prooxidant-antioxidant shift induced by androgen treatment of human prostate carcinoma cells. J Natl Cancer Inst. 1997;89(1):40–48.
  • Prasad S, Kalra N, Singh M, et al. Protective effects of lupeol and mango extract against androgen induced oxidative stress in Swiss albino mice. Asian J Andrology. 2008;10(2):313–318.
  • Chaves EA, Pereira-Junior PP, Fortunato RS, et al. Nandrolone decanoate impairs exercise-induced cardioprotection: role of antioxidant enzymes. J Steroid Biochem Mol Biol. 2006;99(4–5):223–230.
  • Blanco-Rivero J, Sagredo A, Balfagón G, et al. Orchidectomy increases expression and activity of Cu/Zn-superoxide dismutase, while decreasing endothelial nitric oxide bioavailability. J Endocrinol. 2006;190(3):771–778.
  • Borst SE, Quindry JC, Yarrow JF, et al. Testosterone administration induces protection against global myocardial ischemia. Horm Metab Res. 2010;42(02):122–129.
  • Kłapcińska B, Jagsz S, Sadowska-Krepa E, et al. Effects of castration and testosterone replacement on the antioxidant defense system in rat left ventricle. J Physiol Sci. 2008;58(3):173–177.
  • Sadowska-Krępa E, Kłapcińska B, Jagsz S, et al. High-dose testosterone propionate treatment reverses the effects of endurance training on myocardial antioxidant defenses in adolescent male rats. Cardiovasc Toxicol. 2011;11(2):118–127.
  • Darbandi M, Darbandi S, Agarwal A, et al. Reactive oxygen species and male reproductive hormones. Reprod Biol Endocrinol. 2018;16(1):87.
  • Kulkarni SR, Ravindra KP, Dhume CY, et al. Levels of plasma testosterone, antioxidants and oxidative stress in alcoholic patients attending de-addiction centre. Biol Med. 2009;1(4):11–20.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.