464
Views
27
CrossRef citations to date
0
Altmetric
Original Articles

Hydroxyl radical scavenging activity of melatonin and its related indolamines

, & ORCID Icon
Pages 373-383 | Received 18 Mar 2020, Accepted 20 May 2020, Published online: 22 Jun 2020

References

  • McCord JM. The evolution of free radicals and oxidative stress. Am J Med. 2000;108:652–659.
  • Motilva V, García-Mauriño S, Talero E, et al. New paradigms in chronic intestinal inflammation and colon cancer: role of melatonin. J Pineal Res. 2011;51:44–60.
  • Rosales-Corral SA, Acuña-Castroviejo D, Coto-Montes A, et al. Alzheimer’s disease: pathological mechanisms and the beneficial role of melatonin. J Pineal Res. 2012;52:167–202.
  • Reiter RJ. Antioxidant actions of melatonin. Adv Pharmacol. 1996;38:103–117.
  • Tordjman S, Chokron S, Delorme R, et al. Melatonin: pharmacology, functions and therapeutic benefits. Curr Neuropharmacol. 2017;15:434–443.
  • Tan DX, Manchester LC, Reiter RJ, et al. Significance of melatonin in antioxidative defense system: reactions and products. Biol Signals Recept. 2000;9:137–159.
  • Hardeland R, Pandi-Perumal SR, Cardinali DP. Melatonin. Int J Biochem Cell Biol. 2006;38:313–316.
  • Galano A. On the direct scavenging activity of melatonin towards hydroxyl and a series of peroxyl radicals. Phys Chem Chem Phys. 2011;13:7178–7188.
  • Allegra M, Reiter RJ, Tan DX, et al. The chemistry of melatonin’s interaction with reactive species. J Pineal Res. 2003;34:1–10.
  • Galano A, Tan DX, Reiter RJ. On the free radical scavenging activities of melatonin’s metabolites, AFMK and AMK. J Pineal Res. 2013;54:245–257.
  • Tan DX, Manchester LC, Terron MP, et al. One molecule, many derivatives: a never-ending interaction of melatonin with reactive oxygen and nitrogen species? J Pineal Res. 2007;42:28–42.
  • Reiter RJ, Javier DT, Daniele C, et al. Part I: molecular biology the oxidant/antioxidant network: role of melatonin. Neurosignals. 1999;8:56–63.
  • Tsopmo A, Diehl-Jones BW, Aluko RE, et al. Tryptophan released from mother’s milk has antioxidant properties. Pediatr Res. 2009;66:614–618.
  • Pérez-González A, Alvarez-Idaboy JR, Galano A. Free-radical scavenging by tryptophan and its metabolites through electron transfer based processes. J Mol Model. 2015;21:213.
  • Fang L, Parti R, Hu P. Characterization of N-acetyltryptophan degradation products in concentrated human serum albumin solutions and development of an automated high performance liquid chromatography-mass spectrometry method for their quantitation. J Chromatogr A. 2011;1218:7316–7324.
  • Herraiz T, Galisteo J. Endogenous and dietary indoles: a class of antioxidants and radical scavengers in the ABTS assay. Free Radic Res. 2004;38:323–331.
  • Oxenkrug G, Requintina P, Bachurin S. Antioxidant and antiaging activity of N-acetylserotonin and melatonin in the in vivo models. Ann N Y Acad Sci. 2006;939:190–199.
  • Álvarez-Diduk R, Galano A, Tan DX, et al. N-Acetylserotonin and 6-hydroxymelatonin against oxidative stress: implications for the overall protection exerted by melatonin. J Phys Chem B. 2015;119:8535–8543.
  • Tan DX, Manchester LC, Reiter RJ, et al. A novel melatonin metabolite, cyclic 3-hydroxymelatonin: a biomarker of in vivo hydroxyl radical generation. Biochem Biophys Res Commun. 1998;253:614–620.
  • Nimse SB, Pal D. Free radicals, natural antioxidants, and their reaction mechanisms. RSC Adv. 2015;5:27986–28006.
  • Tan DX, Chen LD, Poeggeler B, et al. Melatonin: a potent, endogenous hydroxyl radical scavenger. Endocr J. 1993;1:57–60.
  • Matuszak Z, Reszka KJ, Chignell CF. Reaction of melatonin and related indoles with hydroxyl radicals: EPR and spin trapping investigations. Free Radic Biol Med. 1997;23:367–372.
  • Stasica P, Ulanski P, Rosiak JM. Reactions of melatonin with radicals in deoxygenated aqueous solution. J Radioanal Nucl Chem. 1998;232:107–113.
  • Mahal HS, Sharma HS, Mukherjee T. Antioxidant properties of melatonin: a pulse radiolysis study. Free Radic Biol Med. 1999;26:557–565.
  • Hardeland R, Reiter RJ, Poeggeler B, et al. The significance of the metabolism of the neurohormone melatonin: antioxidative protection and formation of bioactive substances. Neurosci Biobehav Rev. 1993;17:347–357.
  • Turjanski AG, Rosenstein RE, Estrin DA. Reactions of melatonin and related indoles with free radicals: a computational study. J Med Chem. 1998;41:3684–3689.
  • Tan DX, Manchester LC, Reiter RJ, et al. Cyclic 3-hydroxymelatonin: a melatonin metabolite generated as a result of hydroxyl radical scavenging. Biol Signals Recept. 1999;8:70–74.
  • Galano A, Tan DX, Reiter RJ. Cyclic 3-hydroxymelatonin, a key metabolite enhancing the peroxyl radical scavenging activity of melatonin. RSC Adv. 2014;4:5220–5227.
  • Galano A, Medina ME, Tan DX, et al. Melatonin and its metabolites as copper chelating agents and their role in inhibiting oxidative stress: a physicochemical analysis. J Pineal Res. 2015;58:107–116.
  • Frisch MJ, Trucks GW, Schlegel HB, et al. Gaussian09, revision D.01. Wallingford (CT): Gaussian; 2009.
  • Becke AD. Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys. 1993;98:5648–5652.
  • Becke AD. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A Gen Phys. 1988;38:3098–3100.
  • Lee C, Yang W, Parr RG. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B Condens Matter. 1988;37:785–789.
  • Tomasi J, Cammi R. Remarks on the use of the apparent surface charges (ASC) methods in solvation problems: iterative versus matrix-inversion procedures and renormalization of the apparent charges. J Comput Chem. 1995;16:1449–1458.
  • Cossi M, Barone V, Cammi R, et al. Ab initio study of solvated molecules: a new implementation of the polarizable continuum model. Chem Phys Lett. 1996;255:327–335.
  • Cancès E, Mennucci B, Tomasi J. A new integral equation formalism for the polarizable continuum model: theoretical background and applications to isotropic and anisotropic dielectrics. J Chem Phys. 1997;107:3032–3041.
  • Uchida K, Enomoto N, Itakura K, et al. Formation of diastereoisomeric 3a-hydroxypyrroloindoles from a tryptophan residue analog mediated by iron (II)-EDTA and L-ascorbate. Arch Biochem Biophys. 1990;279:14–20.
  • Marino T, Galano A, Russo N. Radical scavenging ability of gallic acid toward OH and OOH radicals. Reaction mechanism and rate constants from the density functional theory. J Phys Chem B. 2014;118:10380–10389.
  • Agnihotri N, Mishra PC. Scavenging mechanism of curcumin toward the hydroxyl radical: a theoretical study of reactions producing ferulic acid and vanillin. J Phys Chem A. 2011;115:14221–14232.
  • Kabanda MM, Serobatse K. A DFT study on the addition and abstraction reactions of thiourea with hydroxyl radical. J Sulfur Chem. 2018;39:23–46.
  • Kamiya K, Boero M, Shiraishi K, et al. Enol-to-keto tautomerism of peptide groups. J Phys Chem B. 2006;110:4443–4450.
  • Gen LQ, Xue Y, Sen YG. Water-assisted enol-to-keto tautomerism of a simple peptide model: a computational investigation. J Mol Struct THEOCHEM. 2008;868:55–64.
  • Tolosa S, Mora-Diez N, Hidalgo A, et al. Amide-imide tautomerism of acetohydroxamic acid in aqueous solution: quantum calculation and SMD simulations. RSC Adv. 2014;4:44757–44768.
  • Jana K, Ganguly B. DFT study to explore the importance of ring size and effect of solvents on the keto-enol tautomerization process of α- And β-cyclodiones. ACS Omega. 2018;3:8429–8439.
  • Kalia S, Sharma A, Kaith BS. Ab initio study of gas phase and water-assisted tautomerization of maleimide and formamide. J Chem Sci. 2007;119:617–624.
  • Giannini F, Devia C, Rodríguez A, et al. The importance of keto-enol forms of arylpropanoids acting as antifungal compounds. Molecules. 2000;5:580–582.
  • Kassab E, Langlet J, Evleth E, et al. Theoretical study of solvent effect on intramolecular proton transfer of glycine. J Mol Struct THEOCHEM. 2000;531:267–282.
  • Zhu HJ, Ren Y, Ren J, et al. DFT explorations of tautomerism of 2-mercaptoimidazole in aqueous solution. J Mol Struct THEOCHEM. 2005;730:199–205.
  • Alagona G, Ghio C, Nagy PI. The catalytic effect of water on the keto-enol tautomerism. Pyruvate and acetylacetone: a computational challenge. Phys Chem Chem Phys. 2010;12:10173–10188.
  • Kaweetirawatt T, Yamaguchi T, Higashiyama T, et al. Theoretical study of keto-enol tautomerism by quantum mechanical calculations (the QM/MC/FEP method). J Phys Org Chem. 2012;25:1097–1104.
  • Takahashi O, Kirikoshi R. Intramolecular cyclization of aspartic acid residues assisted by three water molecules: a density functional theory study. Comput Sci Disc. 2014;7:015005.
  • Ilieva ED, Petrova GP, Nikolova RD, et al. Computational elucidation of the reaction mechanism for synthesis of pyrrolidinedione derivatives: via Nef-Type rearrangement-cyclization reaction. RSC Adv. 2018;8:3178–3188.
  • Méndez-Hurtado J, Menéndez MI, López R, et al. Unraveling the intramolecular cyclization mechanism of oxidized tryptophan in aqueous solution as a function of pH. Org Biomol Chem. 2015;13:8695–8702.
  • Wölfler A, Abuja PM, Schauenstein K, et al. N-acetylserotonin is a better extra- and intracellular antioxidant than melatonin. FEBS Lett. 1999;449:206–210.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.