185
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Smokeless tobacco induces toxicity and apoptosis in neuronal cells: a mechanistic evaluation

ORCID Icon, , ORCID Icon, , , & ORCID Icon show all
Pages 477-496 | Received 18 Oct 2019, Accepted 02 Jul 2020, Published online: 26 Aug 2020

References

  • Gupta PC, Ray CS. Smokeless tobacco and health in India and South Asia. Respirology. 2003;8(4):419–431.
  • Piano MR, Benowitz NL, Fitzgerald GA, et al. American Heart Association Council on Cardiovascular N. Impact of smokeless tobacco products on cardiovascular disease: implications for policy, prevention, and treatment: a policy statement from the American Heart Association. Circulation. 2010;122(15):1520–1544.
  • Gupta PC, Ray CS, Sinha DN, et al. Smokeless tobacco: a major public health problem in the SEA region: a review. Indian J Public Health. 2011;55(3):199–209.
  • Sinha DN, Palipudi KM, Gupta PC, et al. Smokeless tobacco use: a meta-analysis of risk and attributable mortality estimates for India. Indian J Cancer. 2014;51 (Suppl 1):S73–S77.
  • Biswas S, Manna K, Das U, et al. Smokeless tobacco consumption impedes metabolic, cellular, apoptotic and systemic stress pattern: a study on Government employees in Kolkata, India. Sci Rep. 2016;5(1):18284.
  • Stepanov I, Villalta PW, Knezevich A, et al. Analysis of 23 polycyclic aromatic hydrocarbons in smokeless tobacco by gas chromatography-mass spectrometry. Chem Res Toxicol. 2010;23(1):66–73.
  • Stepanov I, Jensen J, Hatsukami D, et al. Tobacco-specific nitrosamines in new tobacco products. Nicotine Tob Res. 2006;8(2):309–313.
  • Bagchi M, Balmoori J, Bagchi D, et al. Smokeless tobacco, oxidative stress, apoptosis, and antioxidants in human oral keratinocytes. Free Radic Biol Med. 1999;26(7-8):992–1000.
  • Avti PK, Vaiphei K, Pathak CM, et al. Involvement of various molecular events in cellular injury induced by smokeless tobacco. Chem Res Toxicol. 2010;23(7):1163–1174.
  • Costea DE, Lukandu O, Bui L, et al. Adverse effects of Sudanese toombak vs. Swedish snuff on human oral cells. J Oral Pathol Med. 2010;39(2):128–140.
  • Lombard C, Farthing D, Sun J, et al. Reference moist smokeless tobacco-induced apoptosis in human monocytes/macrophages cell line MM6. Int Immunopharmacol. 2010;10(9):1029–1040.
  • Ghosh D, Mishra MK, Das S, et al. Tobacco carcinogen induces microglial activation and subsequent neuronal damage. J Neurochem. 2009;110(3):1070–1081.
  • Benowitz NL. Systemic absorption and effects of nicotine from smokeless tobacco. Adv Dent Res. 1997;11(3):336–341.
  • Court J, Martin-Ruiz C, Piggott M, et al. Nicotinic receptor abnormalities in Alzheimer’s disease. Biol Psychiatry. 2001;49(3):175–184.
  • Picciotto MR, Zoli M. Nicotinic receptors in aging and dementia. J Neurobiol. 2002;53(4):641–655.
  • Moreira PI, Santos MS, Oliveira CR. Alzheimer’s disease: a lesson from mitochondrial dysfunction. Antioxid Redox Signal. 2007;9(10):1621–1630.
  • Budd SL, Nicholls DG. Mitochondria in the life and death of neurons. Essays Biochem. 1998;33:43–52.
  • Fiskum G. Mitochondrial participation in ischemic and traumatic neural cell death. J Neurotrauma. 2000;17(10):843–855.
  • Mitchell C, Joyce AR, Piper JT, et al. Role of oxidative stress and MAPK signaling in reference moist smokeless tobacco-induced HOK-16B cell death. Toxicol Lett. 2010;195(1):23–30.
  • Biswas SC, Shi Y, Sproul A, et al. Pro-apoptotic Bim induction in response to nerve growth factor deprivation requires simultaneous activation of three different death signaling pathways. J Biol Chem. 2007;282(40):29368–29374.
  • Sanphui P, Biswas SC. FoxO3a is activated and executes neuron death via Bim in response to beta-amyloid. Cell Death Dis. 2013;4:e625.
  • Schneider L, Giordano S, Zelickson BR, et al. Differentiation of SH-SY5Y cells to a neuronal phenotype changes cellular bioenergetics and the response to oxidative stress. Free Radic Biol Med. 2011;51(11):2007–2017.
  • Das U, Biswas S, Chattopadhyay S, et al. Radiosensitizing effect of ellagic acid on growth of Hepatocellular carcinoma cells: an in vitro study. Sci Rep. 2017;7(1):14043.
  • Manna K, Das U, Das D, et al. Naringin inhibits gamma radiation-induced oxidative DNA damage and inflammation, by modulating p53 and NF-kappaB signaling pathways in murine splenocytes. Free Radic Res. 2015;49(4):422–439.
  • Robinson KM, Janes MS, Pehar M, et al. Selective fluorescent imaging of superoxide in vivo using ethidium-based probes. Proc Natl Acad Sci Usa. 2006;103(41):15038–15043.
  • Kauffman ME, Kauffman MK, Traore K, et al. MitoSOX-based flow cytometry for detecting mitochondrial ROS. React Oxyg Species. 2016;2(5):361–370.
  • Sundqvist M, Christenson K, Bjornsdottir H, et al. Elevated mitochondrial reactive oxygen species and cellular redox imbalance in human NADPH-oxidase-deficient phagocytes. Front Immunol. 2017;8:1828
  • Biswas SC, Greene LA. Nerve growth factor (NGF) down-regulates the Bcl-2 homology 3 (BH3) domain-only protein Bim and suppresses its proapoptotic activity by phosphorylation. J Biol Chem. 2002;277(51):49511–49516.
  • Lowry OH, Rosebrough NJ, Farr AL, et al. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951;193(1):265–275.
  • Manna K, Khan A, Biswas S, et al. Naringin ameliorates radiation-induced hepatic damage through modulation of Nrf2 and NF-κB pathways. RSC Adv. 2016;6(27):23058–23073.
  • Das U, Manna K, Khan A, et al. Ferulic acid (FA) abrogates gamma-radiation induced oxidative stress and DNA damage by up- regulating nuclear translocation of Nrf2 and activation of NHEJ pathway. Free Radic Res. 2017;51(1):47–63.
  • Brand MD, Nicholls DG. Assessing mitochondrial dysfunction in cells. Biochem J. 2011;435(2):297–312.
  • Das A, Bhattacharya A, Chakrabarty S, et al. Smokeless tobacco extract (STE)-induced toxicity in mammalian cells is mediated by the disruption of cellular microtubule network: a key mechanism of cytotoxicity. PLoS One. 2013;8(7):e68224.
  • Weisiger RA, Fridovich I. Superoxide dismutase. Organelle specificity. J Biol Chem. 1973;248(10):3582–3592.
  • Okado-Matsumoto A, Fridovich I. Subcellular distribution of superoxide dismutases (SOD) in rat liver: Cu,Zn-SOD in mitochondria. J Biol Chem. 2001;276(42):38388–38393.
  • Zhang C, Shi Z, Zhang L, et al. Appoptosin interacts with mitochondrial outer-membrane fusion proteins and regulates mitochondrial morphology. J Cell Sci. 2016;129(5):994–1002.
  • Ferrick DA, Neilson A, Beeson C. Advances in measuring cellular bioenergetics using extracellular flux. Drug Discov Today. 2008;13(5–6):268–274.
  • Dranka BP, Benavides GA, Diers AR, et al. Assessing bioenergetic function in response to oxidative stress by metabolic profiling. Free Radic Biol Med. 2011;51(9):1621–1635.
  • Kluck RM, Bossy-Wetzel E, Green DR, et al. The release of cytochrome c from mitochondria: a primary site for Bcl-2 regulation of apoptosis. Science. 1997;275(5303):1132–1136.
  • Harris MH, Thompson CB. The role of the Bcl-2 family in the regulation of outer mitochondrial membrane permeability. Cell Death Differ. 2000;7(12):1182–1191.
  • Fannjiang Y, Cheng WC, Lee SJ, et al. Mitochondrial fission proteins regulate programmed cell death in yeast. Genes Dev. 2004;18(22):2785–2797.
  • Zimmermann KC, Bonzon C, Green DR. The machinery of programmed cell death. Pharmacol Ther. 2001;92(1):57–70.
  • Venderova K, Park DS. Programmed cell death in Parkinson’s disease. Cold Spring Harb Perspect Med. 2012;2(8):a009365.
  • Benchimol S. p53-dependent pathways of apoptosis. Cell Death Differ. 2001;8(11):1049–1051.
  • Moncada S, Bolanos JP. Nitric oxide, cell bioenergetics and neurodegeneration. J Neurochem. 2006;97(6):1676–1689.
  • Cereghetti GM, Scorrano L. The many shapes of mitochondrial death. Oncogene. 2006;25(34):4717–4724.
  • Jagasia R, Grote P, Westermann B, et al. DRP-1-mediated mitochondrial fragmentation during EGL-1-induced cell death in C. elegans. Nature. 2005;433(7027):754–760.
  • Karbowski M, Arnoult D, Chen H, et al. Quantitation of mitochondrial dynamics by photolabeling of individual organelles shows that mitochondrial fusion is blocked during the Bax activation phase of apoptosis. J Cell Biol. 2004;164(4):493–499.
  • Wei MC, Zong WX, Cheng EH, et al. Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. Science. 2001;292(5517):727–730.
  • Tait SW, Green DR. Mitochondria and cell death: outer membrane permeabilization and beyond. Nat Rev Mol Cell Biol. 2010;11(9):621–632.
  • Su Y, Meador JA, Geard CR, et al. Analysis of ionizing radiation-induced DNA damage and repair in three-dimensional human skin model system. Exp Dermatol. 2009;19(8):e16.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.