203
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

The effects of nitric oxide or oxygen on the stable products formed from the tyrosine phenoxyl radical

, , , &
Pages 141-153 | Received 18 Dec 2019, Accepted 26 Dec 2020, Published online: 02 Feb 2021

References

  • Heinecke JW, Li W, Francis GA, et al. Tyrosyl radical generated by myeloperoxidase catalyzes the oxidative cross-linking of proteins. J Clin Invest. 1993;91(6):2866–2872.
  • Al-Hilaly Y, Biaseet L, Blakeman BJF, et al. The involvement of dityrosine crosslinking in α-synuclein assembly and deposition in Lewy Bodies in Parkinson’s disease. Sci Rep. 2016;6:39171.
  • Thomson L. 3-nitrotyrosine modified proteins in atherosclerosis. Dis Markers. 2015;2015:708282–708288.
  • Fu S, Dean R, Southan M, et al. The hydroxyl radical in lens nuclear cataractogenesis. J Biol Chem. 1998;273(44):28603–28609.
  • Radi R. Nitric oxide, oxidants, and protein tyrosine nitration. Proc Natl Acad Sci USA. 2004;101(12):4003–4008.
  • Foskolou IP, Jorgensen C, Leszczynska KB, et al. Ribonucleotide reductase requires subunit switching in hypoxia to maintain DNA replication. Mol Cell. 2017;66(2):206–220.
  • Navarra P, Preziosi P. Hydroxyurea: new insights into an old drug. Crit Rev Oncol/Hematol. 1999;29(3):249–255.
  • Candelaria M, Garcia-Arias A, Cetina L, et al. Radiosensitizers in cervical cancer. Radiat Oncol. 2006;1(1):15–17.
  • King SB. Nitric oxide production from hydroxyurea. Free Radic Biol Med. 2004;37(6):737–744.
  • Jiang J, Jordan SJ, Barr DP, et al. In vivo production of nitric oxide in rats after administration of hydroxyurea. Mol Pharmacol. 1997;52(6):1081–1086.
  • Kwon NS, Stuehr DJ, Nathan CF. Inhibition of tumor cell ribonucleotide reductase by macrophage-derived nitric oxide. J Exp Med. 1991;174(4):761–767.
  • Lepoivre M, Flamand J-M, Henry Y. Early loss of the tyrosyl radical in ribonucleotide reductase of adenocarcinoma cells producing nitric oxide. J Biol Chem. 1992;267:22994–23000.
  • Houée-Lévin C, Bobrowski K, Horakova L, et al. Exploring oxidative modifications of tyrosine: an update on mechanisms of formation, advances in analysis and biological consequences. Free Radic Res. 2015;49(4):347–373.
  • Hunter EPL, Desrosiers MF, Simic MG. The effect of oxygen, antioxidants and superoxide radical on tyrosine phenoxyl radical dimerization. Free Radic Biol Med. 1989;6(6):581–585.
  • Folkes LK, Trujillo M, Bartesaghi S, et al. Kinetics of reduction of tyrosine phenoxyl radicals by glutathione. Arch Biochem Biophys. 2011;506(2):242–249.
  • Eiserich JP, Butler J, Van der Vliet A, et al. Nitric oxide rapidly scavenges tyrosine and tryptophan radicals. Biochem J. 1995;310(3):745–749.
  • Goldstein S, Czapski G, Lind J, et al. Tyrosine nitration by simultaneous generation of (.)NO and O-(2) under physiological conditions. How the radicals do the job. J Biol Chem. 2000;275(5):3031–3036.
  • Roy B, Lepoivre M, Henry Y, et al. Inhibition of ribonucleotide reductase by nitric oxide derived from thionitrites: reversible modifications of both subunits. Biochemistry. 1995;34(16):5411–5418.
  • Szalai VA, Brudvig GW. Reversible binding of nitric oxide to tyrosyl radicals in photosystem II. Nitric oxide quenches formation of the S3 EPR signal species in acetate-inhibited photosystem II. Biochemistry. 1996;35(47):15080–15087.
  • Gunther MR, Hsi LC, Curtis JF, et al. Nitric oxide trapping of the tyrosyl radical of prostaglandin H synthase-2 leads to tyrosine iminoxyl radical and nitrotyrosine formation. J Biol Chem. 1997;272(27):17086–17090.
  • Sanakis Y, Goussias C, Mason RP, et al. NO interacts with the tyrosine radical YD• of photosystem II to form an iminoxyl radical. Biochemistry. 1997;36(6):1411–1417.
  • Lam MA, Pattison DI, Bottle SE, et al. Nitric oxide and nitroxides can act as efficient scavengers of protein-derived free radicals. Chem Res Toxicol. 2008;21(11):2111–2119.
  • Janzen EG, Wilcox AL, Manoharan V. Reactions of nitric oxide with phenolic antioxidants and phenoxyl radicals. J Org Chem. 1993;58(14):3597–3599.
  • Jin F, Leitich J, von Sonntag C. The superoxide radical reacts with tyrosine-derived phenoxyl radicals by addition rather than by electron transfer. J Chem Soc, Perkin Trans 2. 1993;9:1583–1588.
  • Pedron FN, Bartesaghi S, Estrin DA, et al. A computational investigation of the reactions of tyrosyl, tryptophanyl and cysteinyl radiclas with nitric oxide and molecular oxygen. Free Radical Res. 2019;53(1):18–25.
  • Malencik DA, Sprouse JF, Swanson CA, et al. Dityrosine: preparation, isolation and analysis. Anal Biochem. 1996;242(2):202–213.
  • Zacharia IG, Deen WM. Diffusibility and solubility of nitric oxide in water and saline. Ann Biomed Eng. 2005;33(2):214–222.
  • Spinks JWT, Woods RJ. An introduction to radiation chemistry. 2nd ed. New York (NY): Wiley Interscience; 1976.
  • Prütz WA, Mönig H, Butler J, et al. Reactions of nitrogen dioxide in aqueous model systems: oxidation of tyrosine units in peptides and proteins. Arch Biochem Biophys. 1985;243(1):125–134.
  • Jovanovic SV, Harriman A, Simic MG. Electron-transfer reactions of tryptophan and tyrosine derivatives. J Phys Chem. 1986;90(9):1935–1939.
  • Czapski G, Holcman J, Bielski BHJ. Reactivity of nitric oxide with simple short-lived radicals in aqueous solutions. J Am Chem Soc. 1994;116(25):11465–11469.
  • Buxton GV. Radiation chemistry of the liquid state: (1) water and homogeneous aqueous solutions. In: Farhataziz, Rodgers MAJ, editors. Radiation chemistry: principles and applications. New York (NY): VCH Publishers; 1987.
  • Gay CA, Gebicki JM. Perchloric acid enhances sensitivity and reproducibility of the ferric-xylenol orange peroxide assay. Anal Biochem. 2002;304(1):42–46.
  • Winterbourn CC, Parsons-Mair HN, Gebick S, et al. Requirements for superoxide-dependent tyrosine hydroperoxide formation in peptides. Biochem J. 2004;381(1):241–248.
  • Dixon WT, Murphy D. Determination of acid dissociation constants of some phenol radical cations. J Chem Soc, Faraday Trans 2. 1978;74:432–439.
  • Prütz WA, Butler J, Land EJ. Phenol coupling initiated by one-electron oxidation of tyrosine units in peptides and proteins. Int J Radiat Biol. 1983;44:183–196.
  • Bielski BHJ, Shiue GG. Reaction rates of superoxide radicals with the essential amino acids. In: Fitzimons DE, editor. Oxygen free radicals and tissue damage. Indianapolis (IN): Ciba Foundation; 1979. p. 43–48.
  • Nagy P, Kettle AJ, Winterbourn CC. Superoxide-mediated formation of tyrosine hydroperoxides and methionine sulfoxide in peptides through radical addition and intramolecular oxygen transfer. J Biol Chem. 2009;284(22):14723–14733.
  • Möller MN, Hatch DM, Kim H-YH, et al. Superoxide reaction with tyrosyl radicals generates para-hydroperoxy and para-hydroxy derivatives of tyrosine. J Am Chem Soc. 2012;134(40):16773–16780.
  • Gay C, Collins J, Gebicki JM. Hydroperoxide assay with the ferric-xylenol orange complex. Anal Biochem. 1999;273(2):149–155.
  • Roth O, LaVerne JA. Effect of pH on H2O2 production in the radiolysis of water. J Phys Chem A. 2011;115(5):700–708.
  • Marquez LA, Dunford HB. Kinetics of oxidation of tyrosine and dityrosine by myeloperoxidase compounds I and II. Implications for lipoprotein peroxidation studies. J Biol Chem. 1995;270(51):30434–30440.
  • Jacob JS, Cistola DP, Hsu FF, et al. Human phagocytes employ the myeloperoxidase-hydrogen peroxide system to synthesize dityrosine, trityrosine, pulcherosine, and isodityrosine by a tyrosyl radical-dependent pathway. J Biol Chem. 1996;271(33):19950–19956.
  • Wu W, Chen Y, Hazen L. Eosinophil peroxidase nitrates protein tyrosyl residues. Implications for oxidative damage by nitrating intermediates in eosinophilic inflammatory disorders. J Biol Chem. 1999;274(36):25933–25944.
  • Lopez-Llorca LV, Fry SC. Dityrosine, trityrosine and tetratyrosine, potentila cross-links in structural proteins of plant-parasitic nematodes. Nematol. 1989;35(2):165–179.
  • Fry SC. Isodityrosine, a new cross-linking amino acid from plant cell-wall glycoprotein. Biochem J. 1982;204(2):449–455.
  • Sakura S, Fujimoto D. Absorption and fluorescence study of tyrosine-derived crosslinking amino acids from collagen. Photochem Photobiol. 1984;40(6):731–734.
  • Reuter S, Gupta SC, Chaturvedi MM, et al. Oxidative stress, inflammation and cancer: how are they linked? Free Radic Biol Med. 2010;49(11):1603–1616.
  • Solar S, Solar W, Getoff N. Reactivity of OH with tyrosine in aqueous solution studied by pulse radiolysis. J Phys Chem. 1984;88(10):2091–2095.
  • Zhang H, Joseph J, Feix J, et al. Nitration and oxidation of a hydrophobic tyrosine probe by peroxynitrite in membranes: comparison with nitration and oxidation of tyrosine by peroxynitrite in aqueous solution. Biochemistry. 2001;40(25):7675–7686.
  • Bartesaghi S, Valez V, Trujillo M, et al. Mechanistic studies of peroxynitrite-mediated tyrosine nitration in membranes using the hydrophobic probe N-t-BOC-L-tyrosine tert-butyl ester. Biochemistry. 2006;45(22):6813–6825.
  • Bartesaghi S, Wenzel J, Trujillo M, et al. Lipid peroxyl radicals mediate tyrosine dimerization and nitration in membranes. Chem Res Toxicol. 2010;23(4):821–835.
  • Folkes LK, Bartesaghi S, Trujillo M, et al. Kinetics of oxidation of tyrosine by a model alkoxyl radical. Free Radic Res. 2012;46(9):1150–1156.
  • Möller MN, Li Q, Lancaster JR, et al. Acceleration of nitric oxide autoxidation and nitrosation by membranes. IUBMB Life. 2007;59(4–5):243–248.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.