198
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Mitochondrial bioenergetics and enzymatic antioxidant defense differ in Paraná pine cell lines with contrasting embryogenic potential

ORCID Icon, , ORCID Icon, , ORCID Icon, , & ORCID Icon show all
Pages 255-266 | Received 16 Feb 2021, Accepted 18 Apr 2021, Published online: 07 May 2021

References

  • Stefenon VM, Klabunde G, Plá R, et al. Phylogeography of plastid DNA sequences suggests post-glacial southward demographic expansion and the existence of several glacial refugia for Araucaria angustifolia. Sci Rep. 2019;9:1–13.
  • Wilson OJ, Lingner DV, Walters RJ, et al. Cold spot microrefugia hold the key to survival for Brazil’s Critically Endangered Araucaria tree. Global Change Biol. 2019;25:1–13.
  • Thomas P. Araucaria angustifolia. The IUCN Red List of Threatened Species. Araucaria Angustifolia 2013;e.T32975A2829141. https://dx.doi.org/10.2305/IUCN.UK.2013-1.RLTS.T32975A2829141.en. Downloaded on 26 March 2021.
  • Aquea F, Poupin MJ, Matus JT, et al. Synthetic seed production from somatic embryos of Pinus radiata. Biotechnol Lett. 2008;30(10):1847–1852.
  • Klimaszewska K, Overton C, Stewart D, et al. Initiation of somatic embryos and regeneration of plants from primordial shoots of 10-year-old somatic white spruce and expression profiles of 11 genes followed during the tissue culture process. Planta. 2011;233(3):635–647.
  • Nazari M, Amiri RM, Mehraban FH, et al. Change in antioxidant responses against oxidative damage in black chickpea following cold acclimation 1. Russ J Plant Physiol. 2012;59:209–215.
  • Engelmann F. Use of biotechnologies for the conservation of plant biodiversity. In Vitro Celldevbiol-Plant. 2011;47(1):5–16.
  • Manole-Paunescu A. Biotechnology for endangered plant conservation. In: Ahuja MR, Ramawat KG, editors. Biotechnology and Biodiversity. Cham: Springer International Publishing; 2014. p. 181–202.
  • de Oliveira LF, dos Santos ALW, Floh EIS. Polyamine and amino acid profiles in immature Araucaria angustifolia seeds and their association with embryogenic culture establishment. Tree. 2020;34(3):845–854.
  • de Oliveira LF, Navarro BV, Cerruti GV, et al. Polyamine- and amino acid-related metabolism: the roles of arginine and ornithine are associated with the embryogenic potential. Plant Cell Physiol. 2018;59(5):1084–1098.
  • Vieira L do N, Santa-Catarina C, de Freitas Fraga HP, et al. Glutathione improves early somatic embryogenesis in Araucaria angustifolia (Bert) O. Kuntze by alteration in nitric oxide emission. Plant Sci. 2012;195:80–87.
  • Attree SM, Fowke LC. Embryogeny of gymnosperms: advances in synthetic seed technology of conifers. Plant Cell Tiss Organ Cult. 1993;35(1):1–35.
  • Jo L, Dos Santos ALW, Bueno CA, et al. Proteomic analysis and polyamines, ethylene and reactive oxygen species levels of Araucaria angustifolia (Brazilian pine) embryogenic cultures with different embryogenic potential. Tree Physiol. 2014;34(1):94–104.
  • Rutledge RG, Stewart D, Caron S, et al. Potential link between biotic defense activation and recalcitrance to induction of somatic embryogenesis in shoot primordia from adult trees of white spruce (Picea glauca). BMC Plant Biol. 2013;13:116.
  • Elbl P, Lira BS, Andrade SCS, et al. Comparative transcriptome analysis of early somatic embryo formation and seed development in Brazilian pine. Plant Cell Tiss Organ Cult. 2015;120(3):903–915.
  • Feher A. Somatic embryogenesis – stress-induced remodeling of plant cell fate. Biochim Biophys Acta. 2015;1849:385–402.
  • Fehér A, Pasternak TP, Dudits D. Transition of somatic plant cells to an embryogenic state. Plant Cell Tissue Organ Cult. 2003;74(3):201–228.
  • dos Santos ALW, Elbl P, Navarro BV, et al. Quantitative proteomic analysis of Araucaria angustifolia (Bertol.) Kuntze cell lines with contrasting embryogenic potential. J Proteomics. 2016;130:180–189.
  • Arnholdt-Schmitt B, Ragonezi C, Cardoso H. Do mitochondria play a central role in stress-induced somatic embryogenesis? Methods Mol Biol. 2016;1359:87–100.
  • Mohanapriya G, Bharadwaj R, Noceda C, et al. Alternative oxidase (AOX) senses stress levels to coordinate auxin-induced reprogramming from seed germination to somatic embryogenesis – a role relevant for seed vigor prediction and plant robustness. Front Plant Sci. 2019;10:1134.
  • Petrussa E, Bertolini A, Casolo V, et al. Mitochondrial bioenergetics linked to the manifestation of programmed cell death during somatic embryogenesis of Abies alba. Planta. 2009;231(1):93–107.
  • Krajnakova J, Bertolini A, Zoratti L, et al. Changes in ATP, glucose-6-phosphate and NAD(P)H cellular levels during the proliferation and maturation phases of Abies alba Mill. Embryogenic cultures. Tree Physiol. 2013;33(10):1099–1110.
  • Filonova LH, Bozhkov PV, Von AS. Developmental pathway of somatic embryogenesis in Picea abies as revealed by time-lapse tracking. J Exp Bot. 2000;51(343):249–264.
  • Huang S, Hill RD, Wally OSD, et al. Hemoglobin control of cell survival/death decision regulates in vitro plant embryogenesis. Plant Physiol. 2014;165(2):810–825.
  • Rodriguez-Serrano M, Barany I, Prem D, et al. NO, ROS, and cell death associated with caspase-like activity increase in stress-induced microspore embryogenesis of barley. J Exp Bot. 2012;63(5):2007–2024.
  • Møller IM, Jensen PE, Hansson A. Oxidative modifications to cellular components in plants. Annu Rev Plant Biol. 2007;58:459–481.
  • Dietz KJ. Peroxiredoxins in plants and cyanobacteria. Antioxid Redox Signal. 2011;15(4):1129–1159.
  • Liebthal M, Maynard D, Dietz K-J. Peroxiredoxins and redox signaling in plants. Antioxid Redox Signal. 2018;28(7):609–624.
  • Monteiro G, Horta BB, Pimenta DC, et al. Reduction of 1-Cys peroxiredoxins by ascorbate changes the thiol-specific antioxidant paradigm, revealing another function of vitamin C. Proc Natl Acad Sci U S A. 2007;104(12):4886–4891.
  • Pastore D, Trono D, Laus MN, et al. Possible plant mitochondria involvement in cell adaptation to drought stress. A case study: durum wheat mitochondria. J Exp Bot. 2007;58(2):195–210.
  • Rasmusson AG, Fernie AR, Van Dongen JT. Alternative oxidase: a defence against metabolic fluctuations? Physiol Plant. 2009;137(4):371–382.
  • Barreto P, Couñago RM, Arruda P. Mitochondrial uncoupling protein-dependent signaling in plant bioenergetics and stress response. Mitochondrion. 2020;53:109–120.
  • Wanniarachchi V, Dametto L, Sweetman C, et al. Alternative respiratory pathway component genes (AOX and ND) in rice and barley and their response to stress. IJMS. 2018;19(3):915.
  • Møller IM. Plant mitochondria and oxidative stress: electron transport, NADPH turnover, and metabolism of reactive oxygen species. Annu Rev Plant Physiol Plant Mol Biol. 2001;52(1):561–591.
  • Mariano AB, Valente C, Maurer JBB, et al. Functional characterization of mitochondria isolated from the ancient gymnosperm Araucaria angustifolia. Plant Sci. 2008;175(5):701–705.
  • Valente C, Pasqualim P, Jacomasso T, et al. The involvement of PUMP from mitochondria of Araucaria angustifolia embryogenic cells in response to cold stress. Plant Sci. 2012;197:84–91.
  • Dorigan de Matos Furlanetto AL, Valente C, Martinez GR, et al. Cold stress on Araucaria angustifolia embryogenic cells results in oxidative stress and induces adaptation: implications for conservation and propagation. Free Radic Res. 2019;53(1):45–56.
  • Dos Santos ALW, Steiner N, Guerra MP, et al. Somatic embryogenesis in Araucaria angustifolia. Biologia Plant. 2008;52(1):195–199. doi:10.1007/s10535-008-0044-1.
  • Becwar MR, Noland TL, Wyckoff JL. Maturation, germination, and conversion of Norway spruce (Picea abies L.) somatic embryos to plants. In Vitro Cell Dev Biol. 1989;25(6):575–580.
  • Shohael AM, Ali MB, Yu KW, et al. Effect of light on oxidative stress, secondary metabolites and induction of antioxidant enzymes in Eleutherococcus senticosus somatic embryos in bioreactor. Process Biochem. 2006;41(5):1179–1185.
  • Estabrook RW. Mitochondrial respiratory control and the polarographic measurement of ADP:O ratios. In: Colowick SP and Kaplan NO, editors Methods in Enzymology (oxidation and phosphorylation), vol. 10. New York, NY: Academic Press; 1967. p. 41–47.
  • Luft JH. Improvements in epoxy resin embedding methods. J Biophys Biochem Cytol. 1961;9:409–414.
  • Watson ML. Staining of tissue sections for electron microscopy with heavy metals. II. Application of solutions containing lead and barium. J Biophys Biochem Cytol. 1958;4(6):727–730.
  • Reynolds ES. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol. 1963;17:208–212.
  • Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248–254.
  • Rose RJ. Somatic embryogenesis in the Medicago truncatula model: Cellular and molecular mechanisms. Front Plant Sci. 2019;10:267.
  • Cheng W-H, Wang F-L, Cheng X-Q, et al. Polyamine and its metabolite H(2)O(2) play a key role in the conversion of embryogenic callus into somatic embryos in upland cotton (Gossypium hirsutum L.). Front Plant Sci. 2015;6:1063.
  • Liberatore KL, Dukowic-Schulze S, Miller ME, et al. The role of mitochondria in plant development and stress tolerance. Free Radic Biol Med. 2016;100:238–256.
  • Ratajczak E, Małecka A, Ciereszko I, et al. Mitochondria are important determinants of the aging of seeds. IJMS. 2019;20(7):1568.
  • Møller IM, Gardeström P. Plant mitochondria – more active than ever!. Physiol Plant. 2007;129(1):1–5.
  • Sluse FE, Jarmuszkiewicz W. Activity and functional interaction of alternative oxidase and uncoupling protein in mitochondria from tomato fruit. Braz J Med Biol Res. 2000;33(3):259–268.
  • Rasmusson AG, Geisler DA, Møller IM. The multiplicity of dehydrogenases in the electron transport chain of plant mitochondria. Mitochondrion. 2008;8(1):47–60.
  • Wallström SV, Florez-Sarasa I, Araújo WL, et al. Suppression of NDA-type alternative mitochondrial NAD(P)H dehydrogenases in Arabidopsis thaliana modifies growth and metabolism, but not high light stimulation of mitochondrial electron transport. Plant Cell Physiol. 2014;55(5):881–896.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.