359
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Sodium sulfite causes gastric mucosal cell death by inducing oxidative stress

, , ORCID Icon, , &
Pages 606-618 | Received 28 Apr 2021, Accepted 26 May 2021, Published online: 21 Jun 2021

References

  • Cooper AJL. Biochemistry of sulfur-containing amino acids. Annu Rev Biochem. 1983;52:187–222.
  • Gunnison AF, Benton AW. Sulfur dioxide: sulfite. Arch Environ Health. 1971;22:381–388.
  • Taylor SL, Higley NA, Bush RK. Sulfites in foods: uses, analytical methods, residues, fate, exposure assessment, metabolism, toxicity, and hypersensitivity. Adv Food Res. 1986;30:1–76.
  • Irwin SV, Fisher P, Graham E, et al. Sulfites inhibit the growth of four species of beneficial gut bacteria at concentrations regarded as safe for food. PLOS One. 2017;12:e0186629.
  • Lajin B, Goessler W. Exploring the sulfur species in wine by HPLC-ICPMS/MS. Anal Chim Acta. 2019;1092:1–8.
  • Gonçalves S, Alves VR, Pérez SO, et al. Rapid method for the determination of citrate, phosphate and sulfite in seafood by capillary zone electrophoresis. Food Chem. 2020;321:126705.
  • Gardner PR, Gardner DP, Gardner AP. Globins scavenge sulfur trioxide anion radical. J Biol Chem. 2015;290:27204–27214.
  • Gunnison AF. Sulphite toxicity: a critical review of in vitro and in vivo data. Food Cosmet Toxicol. 1981;19:667–682.
  • Gunnison AF, Jacobsen DW, Schwartz HJ. Sulfite hypersensitivity. A critical review. Crit Rev Toxicol. 1987;17:185–214.
  • Lester MR. Sulfite sensitivity: significance in human health. J Am Coll Nutr. 1995;14(3):229–232.
  • Vally H, Misso NLA, Madan V. Clinical effects of sulphite additives. Clin Exp Allergy. 2009;39:1643–1651.
  • Mudd SH, Irreverre F, Laster L. Sulfite oxidase deficiency in man: demonstration of the enzymatic defect. Science. 1967;156:1599–1602.
  • Johnson JL, Rajagopalan KV. Human sulfite oxidase deficiency. Characterization of the molecular defect in a multicomponent system. J Clin Invest. 1976;58:551–556.
  • Leclerq C, Molinaro MG, Piccinelli R, et al. Dietary intake exposure to sulphites in Italy – analytical determination of sulphite-containing foods and their combination into standard meals for adults and children. Food Addit Contam. 2000;17:979–989.
  • Wang X, Cao H, Guan XL, et al. Sulfite triggers sustained calcium overload in cultured cortical neurons via a redox-dependent mechanism. Toxicol Lett. 2016;258:237–248.
  • Mottley C, Mason RP. Sulfate anion free radical formation by the peroxidation of (Bi) sulfite and its reaction with hydroxyl radical scavengers. Arch Biochem Biophys. 1988;267:681–689.
  • Bailey JL, Cole RD. Studies on the reaction of sulfite with proteins. J Biol Chem. 1959;234:1733–1739.
  • Kaneda H, Osawa T, Kawakishi S, et al. Contribution of carbonyl-bisulfite adducts to beer stability. J Agric Food Chem. 1994;42(11):2428–2432.
  • Neta P, Huie RE. Free-radical chemistry of sulfite. Environ Health Perspect. 1985;64:209–217.
  • Maeda A, Kai K, Ishii M, et al. Safranal, a novel protein tyrosine phosphatase 1B inhibitor, activates insulin signaling in C2C12 myotubes and improves glucose tolerance in diabetic KK-Ay mice. Mol Nutr Food Res. 2014;58:1177–1189.
  • Dainin K, Ide R, Maeda A, et al. Pyridoxamine scavenges protein carbonyls and inhibits protein aggregation in oxidative stress-induced human HepG2 hepatocytes. Biochem Biophys Res Commun. 2017;486:845–851.
  • Yoshida H, Ishii M, Akagawa M. Propionate suppresses hepatic gluconeogenesis via GPR43/AMPK signaling pathway. Arch Biochem Biophys. 2019;672:108057.
  • Kimura K, Takada M, Ishii T, et al. Pyrroloquinoline quinone stimulates epithelial cell proliferation by activating epidermal growth factor receptor through redox cycling. Free Radic Biol Med. 2012;53:1239–1251.
  • Saihara K, Kamikubo R, Ikemoto K, et al. Pyrroloquinoline quinone, a redox-active o-quinone, stimulates mitochondrial biogenesis by activating the SIRT1/PGC-1α signaling pathway. Biochemistry. 2017;56:6615–−6625.
  • Kusu H, Yoshida H, Kudo M, et al. Tomatidine reduces palmitate-induced lipid accumulation by activating AMPK via vitamin D receptor-mediated signaling in human HepG2 hepatocytes. Mol Nutr Food Res. 2019;63(22):1801377.
  • Fujita E, Egashira J, Urase K, et al. Caspase-9 processing by caspase-3 via a feedback amplification loop in vivo. Cell Death Differ. 2001;8:335–344.
  • Yagi M, Nakatsuji Y, Maeda A, et al. Phenethyl isothiocyanate activates leptin signaling and decreases food intake. PLOS One. 2018;13:e0206748.
  • Akagawa M, Sasaki D, Ishii Y, et al. New method for the quantitative determination of major protein carbonyls, α-aminoadipic and γ-glutamic semialdehydes: investigation of the formation mechanism and chemical nature in vitro and in vivo. Chem Res Toxicol. 2006;19:1059–1065.
  • Akagawa M, Suyama K, Uchida K. Fluorescent detection of α-aminoadipic and γ-glutamic semialdehydes in oxidized proteins. Free Radic Biol Med. 2009;46:701–706.
  • Wong CM, Marcocci L, Das D, et al. Mechanism of protein decarbonylation. Free Radic Biol Med. 2013;65:1126–1133.
  • Fedorova M, Bollineni RC, Hoffmann R. Protein carbonylation as a major hallmark of oxidative damage. Mass Spectrom Rev. 2014;33:79–97.
  • Guéraud F, Atalay M, Bresgen N, et al. Chemistry and biochemistry of lipid peroxidation products. Free Radic Res. 2010;44:1098–1124.
  • Shibata T, Uchida K. Protein adductomics: a comprehensive analysis of protein modifications by electrophiles. Free Radic Biol Med. 2019;144:218–222.
  • Jung YD, Chay KO, Song DU, et al. Protein carbonyl formation in blood plasma by cephalosporins. Arch Biochem Biophys. 1997;345:311–317.
  • Tanase M, Urba AM, Zolla V, et al. Role of carbonyl modifications on aging-associated protein aggregation. Sci Rep. 2016;6:19311.
  • Nyström T. Role of oxidative carbonylation in protein quality control and senescence. Embo J. 2005;24:1311–1317.
  • David DC, Ollikainen N, Trinidad JC, et al. Widespread protein aggregation as an inherent part of aging in C. elegans. PLOS Biol. 2010;8:e1000450.
  • Shen D, Coleman J, Chan E, et al. Novel cell- and tissue-based assays for detecting misfolded and aggregated protein accumulation within aggresomes and inclusion bodies. Cell Biochem Biophys. 2011;60:173–185.
  • Kilpatrick K, Novoa JA, Hancock T, et al. Chemical induction of Hsp70 reduces α-synuclein aggregation in neuroglioma cells. ACS Chem Biol. 2013;8:1460–1468.
  • Valavanidis A, Vlachogianni T, Fiotakis C. 8-Hydroxy-2′-deoxyguanosine (8-OHdG): a critical biomarker of oxidative stress and carcinogenesis. J Environ Sci HealPart C Environ Carcinog Ecotoxicol Rev. 2009;27:120–139.
  • Shi X. Generation of SO3- and OH radicals in SO32- reactions with inorganic environmental pollutants and its implications to SO32-toxicity. J Inorg Biochem. 1994;56(3):155–165.
  • Laggner H, Hermann M, Sturm B, et al. Sulfite facilitates LDL lipid oxidation by transition metal ions: a pro-oxidant in wine? FEBS Lett. 2005;579:6486–6492.
  • Ott M, Gogvadze V, Orrenius S. Mitochondria, oxidative stress and cell death. Apoptosis. 2007;12:913–922.
  • Saadat YR, Saeidi N, Vahed SZ, et al. An update to DNA ladder assay for apoptosis detection. BioImpacts. 2015;5:25–28.
  • Cummings BS, Schnellmann RG. Measurement of cell death in mammalian cells. Curr Protoc Pharmacol. 2004;12:12.8.
  • Chan FKM, Moriwaki K, De Rosa MJ. Detection of necrosis by release of lactate dehydrogenase activity. Methods Mol Biol. 2013;979:65–70.
  • Jia L, Pei X, Yang F. Electrolysis-assisted Mn(II)/sulfite process for organic contaminant degradation at near-neutral pH. Water. 2019;11(8):1608.
  • Elmas O, Aslan M, Çaǧlar S, et al. The prooxidant effect of sodium metabisulfite in rat liver and kidney. Regul Toxicol Pharmacol. 2005;42:77–82.
  • Suh HJ, Cho YH, Chung MS, et al. Preliminary data on sulphite intake from the Korean diet. J Food Compos Anal. 2007;20(3-4):212–219.
  • Lien KW, Hsieh DPH, Huang HY, et al. Food safety risk assessment for estimating dietary intake of sulfites in the Taiwanese population. Toxicol Rep. 2016;3:544–551.
  • Vally H, Misso NLA. Adverse reactions to the sulphite additives. Gastroenterol Hepatol from Bed to Bench. 2012;5:16–23.
  • Beems RB, Spit BJ, Koëter HBWM, et al. Nature and histogenesis of sulfite-induced gastric lesions in rats. Exp Mol Pathol. 1982;36:316–325.
  • Noorafshan A, Vafabin M, Karbalay-Doust S, et al. Efficacy of curcumin in the modulation of anxiety provoked by sulfite, a food preservative, in rats. Prev Nutr Food Sci. 2017;22:144–148.
  • Yao G, Yue H, Yun Y, et al. Chronic SO2 inhalation above environmental standard impairs neuronal behavior and represses glutamate receptor gene expression and memory-related kinase activation via neuroinflammation in rats. Environ Res. 2015;137:85–93.
  • Vincent AS, Lim BG, Tan J, et al. Sulfite-mediated oxidative stress in kidney cells. Kidney Int. 2004;65:393–402.
  • Beck-Speier I, Liese JG, Belohradsky BH, et al. Sulfite stimulates NADPH oxidase of human neutrophils to produce active oxygen radicals via protein kinase C and Ca2+/calmodulin pathways. Free Radic Biol Med. 1993;14:661–668.
  • Zaloga GP, Marik P. Sulfite-induced propofol oxidation: a cause for radical concern. Crit Care Med. 2003;31:981–983.
  • Carter JR. Amperometric titration of disulfide and sulfhydryl in proteins in 8 M urea. J Biol Chem. 1959;234:1705–1710.
  • Leonard SE, Carroll KS. Chemical “omics” approaches for understanding protein cysteine oxidation in biology. Curr Opin Chem Biol. 2011;15:88–102.
  • Sesti F, Tsitsilonis OE, Kotsinas A, et al. Oxidative stress-mediated biomolecular damage and inflammation in tumorigenesis. In Vivo. 2012;26:395–402.
  • Yang Y, Jiang G, Zhang P, et al. Programmed cell death and its role in inflammation. Mil Med Res. 2015;2:12.
  • Currais A, Fischer W, Maher P, et al. Intraneuronal protein aggregation as a trigger for inflammation and neurodegeneration in the aging brain. FASEB J. 2017;31:5–10.
  • Nivon M, Fort L, Muller P, et al. NFκB is a central regulator of protein quality control in response to protein aggregation stresses via autophagy modulation. Mol Biol Cell. 2016;27:1712–1727.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.