488
Views
1
CrossRef citations to date
0
Altmetric
Review Article

Antioxidant and prooxidant modulation of lipid peroxidation by integral membrane proteins

, , &
Pages 105-114 | Received 20 Dec 2022, Accepted 04 Apr 2023, Published online: 19 Apr 2023

References

  • Niki E. Lipid peroxidation: physiological levels and dual biological effects. Free Radic Biol Med. 2009;47(5):469–484.
  • Yin H, Xu L, Porter NA. Free radical lipid peroxidation: mechanisms and analysis. Chem Rev. 2011;111(10):5944–5972.
  • Noguchi N, Gotoh N, Niki E. Dynamics of the oxidation of low density lipoprotein induced by free radicals. Biochim Biophys Acta. 1993;1168(3):348–357.
  • Steinbrecher UP, Zhang HF, Lougheed M. Role of oxidatively modified LDL in atherosclerosis. Free Radic Biol Med. 1990;9(2):155–168.
  • Schwerzmann K, Cruz-Orive LM, Eggman R, et al. Molecular architecture of the inner membrane of mitochondria from rat liver: a combined biochemical and stereological study. J Cell Biol. 1986;102(1):97–103.
  • Moosmann B, Hajieva P. Probing the role of cysteine thiyl radicals in biology: eminently dangerous, difficult to scavenge. Antioxidants. 2022;11(5):885.
  • Kunath S, Schindeldecker M, De Giacomo A, et al. Prooxidative chain transfer activity by thiol groups in biological systems. Redox Biol. 2020;36:101628.
  • Galano A, Castañeda-Arriaga R, Pérez-González A, et al. Phenolic melatonin-related compounds: their role as chemical protectors against oxidative stress. Molecules. 2016;21(11):1442.
  • Jovanovic SV, Josimovic LR. 1992. Radiation chemistry of fatty and amino acids. In Saul Patai, editor. Acid derivatives. Chichester, West Sussex, UK: John Wiley & Sons; 1992. p. 1199–1248.
  • Denisov ET, Denisova TG. Dissociation energies of N-H bonds in aromatic amines. Pet Chem. 2015;55(2):85–103.
  • Schneider C. An update on products and mechanisms of lipid peroxidation. Mol Nutr Food Res. 2009;53(3):315–321.
  • Doktorov AB, Lukzen NN, Pedersen JB. Analysis of lipid peroxidation kinetics. Role of recombination of alkyl and peroxyl radicals. J Phys Chem B. 2008;112(37):11854–11861.
  • Kunath S, Moosmann B. What is the rate-limiting step towards aging? Chemical reaction kinetics might reconcile contradictory observations in experimental aging research. Geroscience. 2020;42(3):857–866.
  • Brand MD, Affourtit C, Esteves TC, et al. Mitochondrial superoxide: production, biological effects, and activation of uncoupling proteins. Free Radic Biol Med. 2004;37(6):755–767.
  • Moosmann B, Behl C. Antioxidants as treatment for neurodegenerative disorders. Expert Opin Investig Drugs. 2002;11(10):1407–1435.
  • Isani G, Carpenè E. Metallothioneins, unconventional proteins from unconventional animals: a long journey from nematodes to mammals. Biomolecules. 2014;4(2):435–457.
  • Nauser T, Gebicki JM. Antioxidants and radical damage in a hydrophilic environment: chemical reactions and concepts. Essays Biochem. 2020;64(1):67–74.
  • Niki E. Role of vitamin E as a lipid-soluble peroxyl radical scavenger: in vitro and in vivo evidence. Free Radic Biol Med. 2014;66:3–12.
  • Zimniak P. Relationship of electrophilic stress to aging. Free Radic Biol Med. 2011;51(6):1087–1105.
  • Hajieva P, Bayatti N, Granold M, et al. Membrane protein oxidation determines neuronal degeneration. J Neurochem. 2015;133(3):352–367.
  • Traber MG, Atkinson J. Vitamin E, antioxidant and nothing more. Free Radic Biol Med. 2007;43(1):4–15.
  • Moosmann B, Behl C. Cytoprotective antioxidant function of tyrosine and tryptophan residues in transmembrane proteins. Eur J Biochem. 2000;267(18):5687–5692.
  • Schindeldecker M, Moosmann B. Protein-borne methionine residues as structural antioxidants in mitochondria. Amino Acids. 2015;47(7):1421–1432.
  • Marino SM, Gladyshev VN. Cysteine function governs its conservation and degeneration and restricts its utilization on protein surfaces. J Mol Biol. 2010;404(5):902–916.
  • Chatgilialoglu C, Ferreri C. Trans lipids: the free radical path. Acc Chem Res. 2005;38(6):441–448.
  • Denisova TG, Denisov ET. Reactivity of natural phenols in radical reactions. Kinet Catal. 2009;50(3):335–343.
  • Storozhok NM, Gureeva NV, Krysin AP, et al. Interrelation between the inhibiting properties and the activity of phenoxy radicals of antioxidants different in structure. Kinet Catal. 2004;45(4):488–496.
  • Bisby RH, Ahmed S, Cundall RB. Repair of amino acid radicals by a vitamin E analogue. Biochem Biophys Res Commun. 1984;119(1):245–251.
  • Nagaoka S, Okauchi Y, Urano S, et al. Kinetic and ab initio study of the prooxidant effect of vitamin E. Hydrogen abstraction from fatty acid esters and egg yolk lecithin. J Am Chem Soc. 1990;112(24):8921–8924.
  • Denisov ET, Denisova TG. The reactivity of natural phenols. Russ Chem Rev. 2009;78(11):1047–1073.
  • Bisby RH, Ahmed S, Cundall RB, et al. Free radical reactions with alpha-tocopherol and N-stearoyl tryptophan methyl ester in micellar solutions. Free Radic Res Commun. 1986;1(4):251–261.
  • Jovanovic SV, Simic MG. Repair of tryptophan radicals by antioxidants. J Free Radic Biol Med. 1985;1(2):125–129.
  • Domazou AS, Koppenol WH, Gebicki JM. Efficient repair of protein radicals by ascorbate. Free Radic Biol Med. 2009;46(8):1049–1057.
  • Folkes LK, Trujillo M, Bartesaghi S, et al. Kinetics of reduction of tyrosine phenoxyl radicals by glutathione. Arch Biochem Biophys. 2011;506(2):242–249.
  • Nauser T, Koppenol WH, Gebicki JM. The kinetics of oxidation of GSH by protein radicals. Biochem J. 2005;392(Pt 3):693–701.
  • Bisby RH, Parker AW. Reaction of ascorbate with the alpha-tocopheroxyl radical in micellar and bilayer membrane systems. Arch Biochem Biophys. 1995;317(1):170–178.
  • Landolt-Marticorena C, Williams KA, Deber CM, et al. Non-random distribution of amino acids in the transmembrane segments of human type I single span membrane proteins. J Mol Biol. 1993;229(3):602–608.
  • Wallace BA, Janes RW. Tryptophans in membrane proteins. X-ray crystallographic analyses. Adv Exp Med Biol. 1999;467:789–799.
  • Laranjinha J, Cadenas E. Redox cycles of caffeic acid, alpha-tocopherol, and ascorbate: implications for protection of low-density lipoproteins against oxidation. IUBMB Life. 1999;48(1):57–65.
  • Buettner GR. The pecking order of free radicals and antioxidants: lipid peroxidation, alpha-tocopherol, and ascorbate. Arch Biochem Biophys. 1993;300(2):535–543.
  • Bobrowski K, Wierzchowski KL, Holcman J, et al. Intramolecular electron transfer in peptides containing methionine, tryptophan and tyrosine: a pulse radiolysis study. Int J Radiat Biol. 1990;57(5):919–932.
  • Gray HB, Winkler JR. Hole hopping through tyrosine/tryptophan chains protects proteins from oxidative damage. Proc Natl Acad Sci USA. 2015;112(35):10920–10925.
  • Gray HB, Winkler JR. Functional and protective hole hopping in metalloenzymes. Chem Sci. 2021;12(42):13988–14003.
  • Schöneich C, Asmus KD, Dillinger U, et al. Thiyl radical attack on polyunsaturated fatty acids: a possible route to lipid peroxidation. Biochem Biophys Res Commun. 1989;161(1):113–120.
  • Nauser T, Koppenol WH, Schöneich C. Protein thiyl radical reactions and product formation: a kinetic simulation. Free Radic Biol Med. 2015;80:158–163.
  • Pedron FN, Bartesaghi S, Estrin DA, et al. A computational investigation of the reactions of tyrosyl, tryptophanyl, and cysteinyl radicals with nitric oxide and molecular oxygen. Free Radic Res. 2019;53(1):18–25.
  • Thomas DD, Ridnour LA, Isenberg JS, et al. The chemical biology of nitric oxide: implications in cellular signaling. Free Radic Biol Med. 2008;45(1):18–31.
  • Kasaikina OT, Kortenska VD, Yanishlieva NV. Effects of chain transfer and recombination/disproportionation of inhibitor radicals on inhibited oxidation of lipids. Russ Chem Bull. 1999;48(10):1891–1896.
  • Heymans V, Kunath S, Hajieva P, et al. Cell culture characterization of prooxidative chain-transfer agents as novel cytostatic drugs. Molecules. 2021;26(21):6743.
  • Moosmann B. Respiratory chain cysteine and methionine usage indicate a causal role for thiyl radicals in aging. Exp Gerontol. 2011;46(2-3):164–169.
  • Nauser T, Pelling J, Schöneich C. Thiyl radical reaction with amino acid side chains: rate constants for hydrogen transfer and relevance for posttranslational protein modification. Chem Res Toxicol. 2004;17(10):1323–1328.
  • Schöneich C. Mechanisms of protein damage induced by cysteine thiyl radical formation. Chem Res Toxicol. 2008;21(6):1175–1179.
  • Vieira-Silva S, Rocha EP. An assessment of the impacts of molecular oxygen on the evolution of proteomes. Mol Biol Evol. 2008;25(9):1931–1942.
  • Moosmann B. Redox biochemistry of the genetic code. Trends Biochem Sci. 2021;46(2):83–86.
  • Moosmann B, Schindeldecker M, Hajieva P. Cysteine, glutathione and a new genetic code: biochemical adaptations of the primordial cells that spread into open water and survived biospheric oxygenation. Biol Chem. 2020;401(2):213–231.
  • Moosmann B, Behl C. Mitochondrially encoded cysteine predicts animal lifespan. Aging Cell. 2008;7(1):32–46.
  • Schindeldecker M, Stark M, Behl C, et al. Differential cysteine depletion in respiratory chain complexes enables the distinction of longevity from aerobicity. Mech Ageing Dev. 2011;132(4):171–179.
  • Galvan I, Naudí A, Erritzøe J, et al. Long lifespans have evolved with long and monounsaturated fatty acids in birds. Evolution. 2015;69(10):2776–2784.
  • Hulbert AJ, Pamplona R, Buffenstein R, et al. Life and death: metabolic rate, membrane composition, and life span of animals. Physiol Rev. 2007;87(4):1175–1213.
  • Pamplona R, Portero-Otín M, Riba D, et al. Mitochondrial membrane peroxidizability index is inversely related to maximum life span in mammals. J Lipid Res. 1998;39(10):1989–1994.
  • Shmookler Reis RJ, Xu L, Lee H, et al. Modulation of lipid biosynthesis contributes to stress resistance and longevity of C. elegans mutants. Aging (Albany NY). 2011;3(2):125–147.
  • Akaike T, Ida T, Wei FY, et al. Cysteinyl-tRNA synthetase governs cysteine polysulfidation and mitochondrial bioenergetics. Nat Commun. 2017;8(1):1177.
  • Mailloux RJ, Willmore WG. S-glutathionylation reactions in mitochondrial function and disease. Front Cell Dev Biol. 2014;2:68.
  • Wu Z, Khodade VS, Chauvin JR, et al. Hydropersulfides inhibit lipid peroxidation and protect cells from ferroptosis. J Am Chem Soc. 2022;144(34):15825–15837.
  • Bianco CL, Chavez TA, Sosa V, et al. The chemical biology of the persulfide (RSSH)/perthiyl (RSS·) redox couple and possible role in biological redox signaling. Free Radic Biol Med. 2016;101:20–31.
  • Chauvin JR, Griesser M, Pratt DA. Hydropersulfides: H-atom transfer agents par excellence. J Am Chem Soc. 2017;139(18):6484–6493.
  • Barayeu U, Schilling D, Eid M, et al. Hydropersulfides inhibit lipid peroxidation and ferroptosis by scavenging radicals. Nat Chem Biol. 2023;19(1):28–37.
  • Marino SM, Gladyshev VN. Analysis and functional prediction of reactive cysteine residues. J Biol Chem. 2012;287(7):4419–4425.
  • Bender A, Hajieva P, Moosmann B. Adaptive antioxidant methionine accumulation in respiratory chain complexes explains the use of a deviant genetic code in mitochondria. Proc Natl Acad Sci USA. 2008;105(43):16496–16501.
  • Levine RL, Moskovitz J, Stadtman ER. Oxidation of methionine in proteins: roles in antioxidant defense and cellular regulation. IUBMB Life. 2000;50(4-5):301–307.
  • Levine RL, Mosoni L, Berlett BS, et al. Methionine residues as endogenous antioxidants in proteins. Proc Natl Acad Sci USA. 1996;93(26):15036–15040.
  • Marciniak B, Bobrowski K. Photo- and radiation-induced one-electron oxidation of methionine in various structural environments studied by time-resolved techniques. Molecules. 2022;27(3):1028.
  • Davies MJ. Protein oxidation and peroxidation. Biochem J. 2016;473(7):805–825.
  • Li S, Schöneich C, Borchardt RT. Chemical pathways of peptide degradation. VIII. Oxidation of methionine in small model peptides by prooxidant/transition metal ion systems: influence of selective scavengers for reactive oxygen intermediates. Pharm Res. 1995;12(3):348–355.
  • Granold M, Hajieva P, Toşa MI, et al. Modern diversification of the amino acid repertoire driven by oxygen. Proc Natl Acad Sci USA. 2018;115(1):41–46.
  • Barata-Vallejo S, Ferreri C, Postigo A, et al. Radiation chemical studies of methionine in aqueous solution: understanding the role of molecular oxygen. Chem Res Toxicol. 2010;23(1):258–263.
  • Fang J, Wong HS, Brand MD. Production of superoxide and hydrogen peroxide in the mitochondrial matrix is dominated by site IQ of complex I in diverse cell lines. Redox Biol. 2020;37:101722.
  • Wong HS, Dighe PA, Mezera V, et al. Production of superoxide and hydrogen peroxide from specific mitochondrial sites under different bioenergetic conditions. J Biol Chem. 2017;292(41):16804–16809.
  • Suthammarak W, Somerlot BH, Opheim E, et al. Novel interactions between mitochondrial superoxide dismutases and the electron transport chain. Aging Cell. 2013;12(6):1132–1140.
  • Bettinger JQ, Simon M, Korotkov A, et al. Accurate proteomewide measurement of methionine oxidation in aging mouse brains. J Proteome Res. 2022;21(6):1495–1509.
  • Granold M, Moosmann B, Staib-Lasarzik I, et al. High membrane protein oxidation in the human cerebral cortex. Redox Biol. 2015;4:200–207.
  • Denisov E, Chatgilialoglu C, Shestakov A, et al. Rate constants and transition-state geometry of reactions of alkyl, alkoxyl, and peroxyl radicals with thiols. Int J Chem Kinet. 2009;41(4):284–293.
  • Schöneich C, Aced A, Asmus KD. Halogenated peroxyl radicals as two-electron-transfer agents. Oxidation of organic sulfides to sulfoxides. J Am Chem Soc. 1991;113(1):375–376.
  • Bartesaghi S, Wenzel J, Trujillo M, et al. Lipid peroxyl radicals mediate tyrosine dimerization and nitration in membranes. Chem Res Toxicol. 2010;23(4):821–835.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.