311
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Hydrogen peroxide activates APE1/Ref-1 via NF-κB and Parkin: a role in liver cancer resistance to oxidative stress

, , , &
Pages 223-238 | Received 13 Mar 2023, Accepted 20 Jun 2023, Published online: 03 Jul 2023

References

  • Klaunig JE, Wang Z. Oxidative stress in carcinogenesis. Curr Opin Toxicol. 2018;7:116–121. doi: 10.1016/j.cotox.2017.11.014.
  • Aboelella NS, Brandle C, Kim T, et al. Oxidative stress in the tumor microenvironment and its relevance to cancer immunotherapy. Cancers. 2021;13(5):986. doi: 10.3390/cancers13050986.
  • Hayes JD, Dinkova-Kostova AT, Tew KD. Oxidative stress in cancer. Cancer Cell. 2020;38(2):167–197. doi: 10.1016/j.ccell.2020.06.001.
  • Arfin S, Jha NK, Jha SK, et al. Oxidative stress in cancer cell metabolism. Antioxidants. 2021;10(5):642. doi: 10.3390/antiox10050642.
  • Raffoul JJ, Kucuk O, Sarkar FH, et al. DNA repair and cancer therapy: targeting APE1/ref-1 using dietary agents. J Oncol. 2012;2012:1–2. doi: 10.1155/2012/749310.
  • Park JS, Kim HL, Kim YJ, et al. Human AP endonuclease 1: a potential marker for the prediction of environmental carcinogenesis risk. Oxid Med Cell Longev. 2014;2014:1–15. doi: 10.1155/2014/730301.
  • Shah F, Logsdon D, Messmann RA, et al. Exploiting the Ref-1-APE1 node in cancer signaling and other diseases: from bench to clinic. Npj Precis Oncol. 2017;1:19.
  • Malfatti MC, Antoniali G, Codrich M, et al. Coping with RNA damage with a focus on APE1, a BER enzyme at the crossroad between DNA damage repair and RNA processing/decay. DNA Repair. 2021;104:103133. doi: 10.1016/j.dnarep.2021.103133.
  • Codrich M, Degrassi M, Malfatti MC, et al. APE1 interacts with the nuclear exosome complex protein MTR4 and is involved in cisplatin‐ and 5‐fluorouracil‐induced RNA damage response. Febs J. 2023;290(7):1740–1764. doi: 10.1111/febs.16671.
  • Antoniali G, Dalla E, Mangiapane G, et al. APE1 controls DICER1 expression in NSCLC through miR-33a and miR-130b. Cell Mol Life Sci. 2022;79(8):446. doi: 10.1007/s00018-022-04443-7.
  • Vascotto C, Fantini D, Romanello M, et al. APE1/Ref-1 interacts with NPM1 within nucleoli and plays a role in the rRNA quality control process. Mol Cell Biol. 2009;29(7):1834–1854. doi: 10.1128/MCB.01337-08.
  • Antoniali G, Serra F, Lirussi L, et al. Mammalian APE1 controls miRNA processing and its interactome is linked to cancer RNA metabolism. Nat Commun. 2017;8(1):797. doi: 10.1038/s41467-017-00842-8.
  • Izumi T, Henner WD, Mitra S. Negative regulation of the major human AP-Endonuclease, a multifunctional protein. Biochemistry. 1996;35(47):14679–14683. doi: 10.1021/bi961995u.
  • Mahjabeen I, Baig RM, Sabir M, et al. Genetic and expressional variations of APEX1 are associated with increased risk of head and neck cancer. Mutagenesis. 2013;28(2):213–218. doi: 10.1093/mutage/ges074.
  • Kim M-H, Kim H-B, Yoon SP, et al. Colon cancer progression is driven by APEX1-mediated upregulation of Jagged. J Clin Invest. 2013;123(8):3211–3230. doi: 10.1172/JCI65521.
  • Cao L, Cheng H, Jiang Q, et al. APEX1 is a novel diagnostic and prognostic biomarker for hepatocellular carcinoma. Aging. 2020;12(5):4573–4591. doi: 10.18632/aging.102913.
  • Peng L, Liu Y, Chen J, et al. APEX1 regulates alternative splicing of key tumorigenesis genes in non-small-cell lung cancer. BMC Med Genomics. 2022;15(1):147. doi: 10.1186/s12920-022-01290-0.
  • Bobola MS, Finn LS, Ellenbogen RG, et al. Apurinic/apyrimidinic endonuclease activity is associated with response to radiation and chemotherapy in medulloblastoma and primitive neuroectodermal tumors. Clin Cancer Res. 2005;11(20):7405–7414. doi: 10.1158/1078-0432.CCR-05-1068.
  • Curtis CD, Thorngren DL, Nardulli AM. Immunohistochemical analysis of oxidative stress and DNA repair proteins in normal mammary and breast cancer tissues. BMC Cancer. 2010;10:9. doi: 10.1186/1471-2407-10-9.
  • Koukourakis MI, Giatromanolaki A, Kakolyris S, et al. Nuclear expression of human apurinic/apyrimidinic endonuclease (HAP1/Ref-1) in head-and-neck cancer is associated with resistance to chemoradiotherapy and poor outcome. Int J Radiat Oncol Biol Phys. 2001;50(1):27–36. doi: 10.1016/s0360-3016(00)01561-3.
  • Tell G, Zecca A, Pellizzari L, et al. An environment to nucleus’ signaling system operates in B lymphocytes: redox status modulates BSAP/Pax-5 activation through Ref-1 nuclear translocation. Nucleic Acids Res. 2000;28(5):1099–1105. doi: 10.1093/nar/28.5.1099.
  • Ramana CV, Boldogh I, Izumi T, et al. Activation of apurinic/apyrimidinic endonuclease in human cells by reactive oxygen species and its correlation with their adaptive response to genotoxicity of free radicals. Proc Natl Acad Sci USA. 1998;95(9):5061–5066. doi: 10.1073/pnas.95.9.5061.
  • Harrison L, Ascione AG, Wilson DM, et al. Characterization of the promoter region of the human apurinic endonuclease gene (APE). J Biol Chem. 1995;270(10):5556–5564. doi: 10.1074/jbc.270.10.5556.
  • Oguro A, Oida S, Imaoka S. Down-regulation of EPHX2 gene transcription by Sp1 under high-glucose conditions. Biochem J. 2015;470(3):281–291. doi: 10.1042/BJ20150397.
  • Siswanto FM, Oguro A, Imaoka S. Sp1 is a substrate of Keap1 and regulates the activity of CRL4A(WDR23) ubiquitin ligase toward Nrf2. J Biol Chem. 2021;296:100704. doi: 10.1016/j.jbc.2021.100704.
  • Thakur S, Sarkar B, Cholia RP, et al. APE1/Ref-1 as an emerging therapeutic target for various human diseases: phytochemical modulation of its functions. Exp Mol Med. 2014;46(7):e106. doi: 10.1038/emm.2014.42.
  • Busso CS, Iwakuma T, Izumi T. Ubiquitination of mammalian AP endonuclease (APE1) regulated by the p53–MDM2 signaling pathway. Oncogene. 2009;28(13):1616–1625. doi: 10.1038/onc.2009.5.
  • Meisenberg C, Tait PS, Dianova II, et al. Ubiquitin ligase UBR3 regulates cellular levels of the essential DNA repair protein APE1 and is required for genome stability. Nucleic Acids Res. 2012;40(2):701–711. doi: 10.1093/nar/gkr744.
  • Scott TL, Wicker CA, Suganya R, et al. Polyubiquitination of apurinic/apyrimidinic endonuclease 1 by Parkin. Mol Carcinog. 2017;56(2):325–336. doi: 10.1002/mc.22495.
  • Kobayashi Y, Oguro A, Imaoka S. Feedback of hypoxia-inducible factor-1alpha (HIF-1alpha) transcriptional activity via redox factor-1 (Ref-1) induction by reactive oxygen species (ROS). Free Radic Res. 2021;55(2):154–164. doi: 10.1080/10715762.2020.1870685.
  • Siswanto FM, Mitsuoka Y, Nakamura M, et al. Nrf2 and Parkin-Hsc70 regulate the expression and protein stability of p62/SQSTM1 under hypoxia. Sci Rep. 2022;12(1):21265. doi: 10.1038/s41598-022-25784-0.
  • Siswanto FM, Tamura A, Sakuma R, et al. Yeast β-glucan increases etoposide sensitivity in lung cancer cell line A549 by suppressing nuclear factor erythroid 2-Related factor 2 via the noncanonical nuclear factor Kappa B pathway. Mol Pharmacol. 2022;101(4):257–273. doi: 10.1124/molpharm.121.000475.
  • Siswanto FM, Sakuma R, Oguro A, et al. Chlorogenic acid activates Nrf2/SKN-1 and prolongs the lifespan of Caenorhabditis elegans via the Akt-FOXO3/DAF16a-DDB1 pathway and activation of DAF16f. J Gerontol A Biol Sci Med Sci. 2022;77(8):1503–1516. doi: 10.1093/gerona/glac062.
  • Baba K, Morimoto H, Imaoka S. Seven in absentia homolog 2 (Siah2) protein is a regulator of NF-E2-related factor 2 (Nrf2). J Biol Chem. 2013;288(25):18393–18405. doi: 10.1074/jbc.M112.438762.
  • Osada M, Imaoka S, Sugimoto T, et al. NADPH-cytochrome P-450 reductase in the plasma membrane modulates the activation of hypoxia-inducible factor 1. J Biol Chem. 2002;277(26):23367–23373. doi: 10.1074/jbc.M112413200.
  • Tang Z, Li C, Kang B, et al. GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res. 2017;45(W1):W98–W102. doi: 10.1093/nar/gkx247.
  • Chen Z, Chen Y-Z, Wang X-F, et al. Prediction of ubiquitination sites by using the composition of k-spaced amino acid pairs. PLoS One. 2011;6(7):e22930. doi: 10.1371/journal.pone.0022930.
  • Chen Z, Zhou Y, Song J, et al. hCKSAAP_UbSite: improved prediction of human ubiquitination sites by exploiting amino acid pattern and properties. Biochim Biophys Acta. 2013;1834(8):1461–1467. doi: 10.1016/j.bbapap.2013.04.006.
  • Tell G, Damante G, Caldwell D, et al. The intracellular localization of APE1/Ref-1: more than a passive phenomenon? Antioxid Redox Signal. 2005;7(3–4):367–384. doi: 10.1089/ars.2005.7.367.
  • Fantini D, Vascotto C, Deganuto M, et al. APE1/Ref-1 regulates PTEN expression mediated by egr-1. Free Radic Res. 2008;42(1):20–29. doi: 10.1080/10715760701765616.
  • Jackson EB, Theriot CA, Chattopadhyay R, et al. Analysis of nuclear transport signals in the human apurinic/apyrimidinic endonuclease (APE1/Ref1). Nucleic Acids Res. 2005;33(10):3303–3312. doi: 10.1093/nar/gki641.
  • Tell G, Quadrifoglio F, Tiribelli C, et al. The many functions of APE1/Ref-1: not only a DNA repair enzyme. Antioxid Redox Signal. 2009;11(3):601–620. doi: 10.1089/ars.2008.2194.
  • Fujiwara M, Marusawa H, Wang H-Q, et al. Parkin as a tumor suppressor gene for hepatocellular carcinoma. Oncogene. 2008;27(46):6002–6011. doi: 10.1038/onc.2008.199.
  • Wang F, Denison S, Lai J-P, et al. Parkin gene alterations in hepatocellular carcinoma. Genes Chromosomes Cancer. 2004;40(2):85–96. doi: 10.1002/gcc.20020.
  • Di Maso V, Mediavilla MG, Vascotto C, et al. Transcriptional up-regulation of APE1/Ref-1 in hepatic tumor: role in hepatocytes resistance to oxidative stress and apoptosis. PLoS One. 2015;10(12):e0143289. doi: 10.1371/journal.pone.0143289.
  • Meng F, Yao D, Shi Y, et al. Oxidation of the cysteine-rich regions of parkin perturbs its E3 ligase activity and contributes to protein aggregation. Mol Neurodegener. 2011;6:34.
  • Bouman L, Schlierf A, Lutz AK, et al. Parkin is transcriptionally regulated by ATF4: evidence for an interconnection between mitochondrial stress and ER stress. Cell Death Differ. 2011;18(5):769–782. doi: 10.1038/cdd.2010.142.
  • Zhao Y, Sun M. Metformin rescues Parkin protein expression and mitophagy in high glucose-challenged human renal epithelial cells by inhibiting NF-κB via PP2A activation. Life Sci. 2020;246:117382. doi: 10.1016/j.lfs.2020.117382.
  • Grösch S, Fritz G, Kaina B. Apurinic endonuclease (Ref-1) is induced in mammalian cells by oxidative stress and involved in clastogenic adaptation. Cancer Res. 1998;58(19):4410–4416.
  • Morgan MJ, Liu Z. Crosstalk of reactive oxygen species and NF-κB signaling. Cell Res. 2011;21(1):103–115. doi: 10.1038/cr.2010.178.
  • Song J, Futagami S, Nagoya H, et al. Apurinic/apyrimidinic endonuclease-1 (APE-1) is overexpressed via the activation of NF-κB-p65 in MCP-1-positive esophageal squamous cell carcinoma tissue. J Clin Biochem Nutr. 2013;52(2):112–119. doi: 10.3164/jcbn.12-95.
  • Arkinson C, Walden H. Parkin function in Parkinson’s disease. Science. 2018;360(6386):267–268. doi: 10.1126/science.aar6606.
  • Kamienieva I, Duszyński J, Szczepanowska J. Multitasking guardian of mitochondrial quality: Parkin function and Parkinson’s disease. Transl Neurodegener. 2021;10(1):5. doi: 10.1186/s40035-020-00229-8.
  • Tran TA, Nguyen AD, Chang J, et al. Lipopolysaccharide and tumor necrosis factor regulate parkin expression via nuclear Factor-Kappa B. PLoS One. 2011;6(8):e23660. doi: 10.1371/journal.pone.0023660.
  • Murillo-González FE, García-Aguilar R, Vega L, et al. Regulation of parkin expression as the key balance between neural survival and cancer cell death. Biochem Pharmacol. 2021;190:114650. doi: 10.1016/j.bcp.2021.114650.
  • Berghe W, Vanden De Bosscher K, Boone E, et al. The nuclear factor-κB engages CBP/p300 and histone acetyltransferase activity for transcriptional activation of the interleukin-6 gene promoter. J Biol Chem. 1999;274(45):32091–32098. doi: 10.1074/jbc.274.45.32091.
  • Chérasse Y, Maurin A-C, Chaveroux C, et al. The p300/CBP-associated factor (PCAF) is a cofactor of ATF4 for amino acid-regulated transcription of CHOP. Nucleic Acids Res. 2007;35(17):5954–5965. doi: 10.1093/nar/gkm642.
  • Yao D, Gu Z, Nakamura T, et al. Nitrosative stress linked to sporadic Parkinson’s disease: s-nitrosylation of parkin regulates its E3 ubiquitin ligase activity. Proc Natl Acad Sci USA. 2004;101(29):10810–10814. doi: 10.1073/pnas.0404161101.
  • Sarraf SA, Raman M, Guarani-Pereira V, et al. Landscape of the PARKIN-dependent ubiquitylome in response to mitochondrial depolarization. Nature. 2013;496(7445):372–376. doi: 10.1038/nature12043.
  • Avellini C, Orsaria M, Baccarani U, et al. Apurinic apyrimidinic endonuclease/redox effector factor 1 immunoreactivity and grading in hepatocellular carcinoma risk of relapse after liver transplantation. Transplant Proc. 2010;42(4):1204–1208. doi: 10.1016/j.transproceed.2010.03.045.
  • Cun Y, Dai N, Xiong C, et al. Silencing of APE1 enhances sensitivity of human hepatocellular carcinoma cells to radiotherapy in vitro and in a xenograft model. PLoS One. 2013;8(2):e55313. doi: 10.1371/journal.pone.0055313.
  • Xiong J-J, Zhang Y, Wang J-L, et al. Silencing of ref-1 expression by retrovirus-mediated shRNA sensitizes HEK293 cells to hydrogen Peroxide-Induced apoptosis. Biosci Biotechnol Biochem. 2008;72(12):3206–3210. doi: 10.1271/bbb.80415.
  • Unnikrishnan A, Raffoul JJ, Patel HV, et al. Oxidative stress alters base excision repair pathway and increases apoptotic response in apurinic/apyrimidinic endonuclease 1/redox factor-1 haploinsufficient mice. Free Radic Biol Med. 2009;46(11):1488–1499. doi: 10.1016/j.freeradbiomed.2009.02.021.
  • Bonnal SC, López-Oreja I, Valcárcel J. Roles and mechanisms of alternative splicing in cancer – implications for care. Nat Rev Clin Oncol. 2020;17(8):457–474. doi: 10.1038/s41571-020-0350-x.
  • Zhang Y, Qian J, Gu C, et al. Alternative splicing and cancer: a systematic review. Signal Transduct Target Ther. 2021;6:78.
  • El Marabti E, Younis I. The cancer spliceome: reprograming of alternative splicing in cancer. Front. Mol. Biosci. 2018;5:e00080. doi: 10.3389/fmolb.2018.00080.
  • Szewczyk MM, Luciani GM, Vu V, et al. PRMT5 regulates ATF4 transcript splicing and oxidative stress response. Redox Biol. 2022;51:102282. doi: 10.1016/j.redox.2022.102282.
  • Takeo K, Kawai T, Nishida K, et al. Oxidative stress-induced alternative splicing of transformer 2 β (SFRS10) and CD44 pre-mRNAs in gastric epithelial cells. Am J Physiol Cell Physiol. 2009;297(2):C330–C338. doi: 10.1152/ajpcell.00009.2009.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.