239
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Epoxides: an underestimated lipid oxidation product

ORCID Icon
Received 10 Mar 2023, Accepted 09 Aug 2023, Published online: 20 Dec 2023

References

  • Gardner HW. Oxygen radical chemistry of polyunsaturated fatty acids. Free Radic Biol Med. 1989;7(1):65–86. doi: 10.1016/0891-5849(89)90102-0.
  • Porter NA, Wujek DG. The autoxidation of polyunsaturated fatty acids. In: Quintanilla A, editor. Reactive oxygen species in chemistry, biology, and medicine. New York: Plenum Publishing Corp. 1987. p. 55–79.
  • Yin H, Xu L, Porter NA. Free radical lipid peroxidation: mechanisms and analysis. Chem Rev. 2011;111(10):5944–5972. doi: 10.1021/cr200084z.
  • Porter NA. Autoxidation of polyunsaturated fatty acids: initiation, propagation, and product distribution (basic chemistry). In: Vigo-Pelfrey C, editor. Membrane lipid oxidation. Vol. I. Boca Raton, FL: CRC Press; 1990. p. 33–62.
  • Frankel EN. Chemistry of free radical and singlet oxidation of lipids. Prog Lipid Res. 1984;23(4):197–221. doi: 10.1016/0163-7827(84)90011-0.
  • Frankel EN. Secondary products of lipid oxidation. Chem Phys Lipids. 1987;44(2–4):73–85. doi: 10.1016/0009-3084(87)90045-4.
  • Frankel EN. Hydroperoxidation of unsaturated fatty esters. In: Simic MG, Taylor KA, Ward JF, von Sonntag C, editors. Oxygen radicals in biology and medicine. New York: Plenum Press; 1988. p. 265–282.
  • Frankel EN. 2012. Lipid oxidation. Second Edition. Cambridge, UK: Woodhead Publishing.
  • Schaich KM. Lipid oxidation in fats and oils: theoretical aspects. In: Shahidi F, editor. Bailey’s industrial fats and oils. 6th Edition. New York: John Wiley; 2005. p. 2681–2767.
  • Schaich KM. Lipid oxidation: new perspectives on an old reaction. In: Shahidi F, editor. Bailey’s industrial fats and oils. 7th Edition. Hoboken, NJ: Wiley; 2020. p. 1–72.
  • Farmer EH, Sutton DA. The course of autoxidation reactions in polyisoprenes and allied compounds. IV. The isolation and constitution of photochemically-formed methyl oleate peroxide. J Chem Soc. 1943:119–122. doi: 10.1039/jr9430000119.
  • Atherton D, Hilditch TP. 39. The union of gaseous oxygen with methyl oleate at 20° and 120°. J Chem Soc. 1944;0(0):105–108. doi: 10.1039/JR9440000105.
  • Gunstone FD, Hilditch TP. The union of gaseous oxygen with methyl oleate, linoleate, and linolenate. J Chem Soc. 1945:836–841. doi: 10.1039/JR9450000836.
  • Bergstrom S. Autoxidation of linoleic acid. Nature. 1945;156(3972):717–718. doi: 10.1038/156717b0.
  • Lundberg WO, Chipault JR. The oxidation of methyl linoleate at various temperatures. J Am Chem Soc. 1947;69(4):833–836. doi: 10.1021/ja01196a025.
  • Farmer EH. Peroxidation in relation to olefinic structure. Trans. Faraday Soc. 1946;42(0):228–236. doi: 10.1039/tf9464200228.
  • Holman RT, Elmer OC. The rates of oxidation of unsaturated fatty acids and esters. J Americ Oil Chem Soc. 1947;24(4):127–129. doi: 10.1007/BF02643258.
  • Bolland JL, Koch HP. The course of autoxidation reactions in polyisoprenes and allied compounds. Part IX. The primary thermal oxidation products of ethyl linoleate. J. Chem. Soc. 1945:445–447. doi: 10.1039/jr9450000445.
  • Bolland JL. Kinetics of olefin oxidation. Q Rev Chem Soc. 1949;3(1):1–21. doi: 10.1039/qr9490300001.
  • Mayo FR, Miller AA, Russell GA. The oxidation of unsaturated compounds. IX. The effects of structure on the rates and products of oxidation of unsaturated compounds. J Am Chem Soc. 1958;80(10):2500–2507. doi: 10.1021/ja01543a034.
  • Privett GS, Nickell EC, Tolberg WE, et al. Evidence for hydroperoxide formation in the autoxidation of methyl linolenate. J Americ Oil Chem Soc. 1954;31(1):23–27. doi: 10.1007/BF02544766.
  • Bolland JL. Kinetic studies in the chemistry of rubber and related materials. VII. Influence of chemical structure on the α-methylenic reactivity of olefins. Trans Faraday Soc. 1950;46(0):358–368. doi: 10.1039/TF9504600358.
  • Mayo FR, Miller AA. Oxidation of unsaturated compounds. II. Reactions of styrene peroxide. J Am Chem Soc. 1956;78(5):1023–1034. doi: 10.1021/ja01586a043.
  • Mayo FR, Miller AA. The oxidation of unsaturated compounds. VII. The oxidation of methacrylic esters. J Am Chem Soc. 1958;80(10):2493–2496. doi: 10.1021/ja01543a032.
  • Bateman L, Hughes H, Morris AL. Hydroperoxide decomposition in relation to the initiation of radical chain reactions. Discuss Faraday Soc. 1953;14(0):190–199. doi: 10.1039/df9531400190.
  • Privett GS, Nickell EC. Concurrent oxidation of accumulated hydroperoxides in the autoxidation of methyl-linoleate. J Americ Oil Chem Soc. 1956;33(4):156–163. doi: 10.1007/BF02638204.
  • Banks A, Keay JN, Smith, JG. Structure of conjugated methyl linoleate hydroperoxide. Nature. 1957;179(4569):1078–1078. doi: 10.1038/1791078b0.
  • Knight HB, Coleman JE, Swern D. Reactions of fatty materials with oxygen. IX. Analytical study of the autoxidation of methyl oleate. J Americ Oil Chem Soc. 1951;28(12):498–501. doi: 10.1007/BF02645825.
  • Knight HB, Eddy CR, Swern D. Reactions of fatty materials with oxygen. VIII. Cis-trans isomerization during autoxidation of methyl oleate. J Americ Oil Chem Soc. 1951;28(5):188–192. doi: 10.1007/BF02646545.
  • Tappel AL. The mechanism of the oxidation of unsaturated fatty acids catalyzed by hematin compounds. Arch Biochem Biophys. 1953;44(2):378–395. doi: 10.1016/0003-9861(53)90056-3
  • Tappel AL. Oxidative rancidity in food products. I. Linoleate oxidation catalyzed by hemin, hemoglobin, and cytochrome c. Food Res. 1953;18(1–6):560–573. doi: 10.1111/j.1365-2621.1953.tb17751.x.
  • Watts BM. Oxidative rancidity and discoloration in meat. Adv Food Res. 1954;5:1–52. doi: 10.1016/S0065-2628(08)60220-7
  • Tappel AL. Unsaturated lipide oxidation catalyzed by hematin compounds. J Biol Chem. 1955;217(2):721–733. doi: 10.1016/S0021-9258(18)65938-1.
  • Maier VP, Tappel AL. Rate studies of unsaturated fatty acid oxidation catalyzed by hematin compounds. J Americ Oil Chem Soc. 1959;36(1):8–12. doi: 10.1007/BF02540257.
  • Maier VP, Tappel AL. Products of unsaturated fatty acid oxidation catalyzed by hematin compounds. J Americ Oil Chem Soc. 1959;36(1):12–15. doi: 10.1007/BF02540258.
  • Younathan MT, Watts BM. Relation of meat pigments to lipide oxidation. J Food Science. 1959;24(6):728–734. doi: 10.1111/j.1365-2621.1959.tb17326.x.
  • Russell GA. Fundamental processes of autoxidation. J Chem Educ. 1959;36(3):111–118. doi: 10.1021/ed036p111.
  • Swift CE, Dollear FG. The oxidation of methyl oleate. II. A reaction between methyl hydroperoxido oleate and oleic acid. J Americ Oil Chem Soc. 1948;25(2):52–53. doi: 10.1007/BF02593189.
  • Knight HB, Jordan EF, Jr., Koos RE, et al. Reactions of fatty materials with oxygen. XV. Formation of 9,10-dihydroxystearic acid and cleavage products in the oxidation of oleic acid and methyl oleate in acetic acid. J Americ Oil Chem Soc. 1954;31(3):93–96. doi: 10.1007/BF02612490.
  • Ingold KU. Peroxy radicals. Acc. Chem. Res. 1969;2(1):1–9. doi: 10.1021/ar50013a001.
  • Ingold KU. Rate constants for some reactions of oxy radicals. Pure Appl Chem. 1967;15(1):49–68. doi: 10.1351/pac196715010049.
  • Howard JA, Ingold KU. Absolute rate constants for hydrocarbon autoxidation. VI. Alkyl aromatic and olefinic hydrocarbons. Can. J Chem. 1967;45(8):793–802. doi: 10.1139/v67-132.
  • Howard JA, Ingold KU. Absolute rate constants for hydrocarbon oxidation. XI. The reactions of tertiary peroxy radicals. Can J Chem. 1968;46(16):2655–2660. doi: 10.1139/v68-437.
  • Howard JA, Ingold KU. Absolute rate constants for hydrocarbon oxidation. XII. Rate constants for secondary peroxy radicals. Can J Chem. 1968;46(16):2661–2666. doi: 10.1139/v68-438.
  • Howard JA, Schwalm WJ, Ingold KU. Absolute rate constants for hydrocarbon autoxidation. VII. Reactivities of peroxy radicals toward hydrocarbons and hydroperoxides. In: Mayo FR, editor. Oxidation of organic compounds, advanced chemistry series. Vol. 75. Washington, D.C.: American Chemical Society; 1968. p. 6–23.
  • Hendry DG, Mill T, Piszkiewicz L, et al. A critical review of H‐atom transfer in the liquid phase: chlorine atom, alkyl, trichloromethyl, alkoxy, and alkylperoxy radicals. J Phys Chem Ref Data. 1974;3(4):937–978. doi: 10.1063/1.3253151.
  • Hendry DG, Russell GA. Solvent effects in the reactions of free radicals and atoms. IX. Effect of solvent polarity on the reactions of peroxy radicals. J Am Chem Soc. 1964;86(12):2368–2371. doi: 10.1021/ja01066a014.
  • Howard JA, Ingold KU. Solvent effects on hydrocarbon autoxidations. Can. J. Chem. 1964;42(5):1250–1253. doi: 10.1139/v64-196.
  • Hiatt R, Irwin KC. Homolytic decomposition of hydroperoxides. V. Thermal decompositions. J Org Chem. 1968;33(4):1436–1441. doi: 10.1021/jo01268a026.
  • Hiatt R, Irwin KC, Gould CW. Homolytic decomposition of hydroperoxides. IV. Metal-catalyzed decompositions. J Org Chem. 1968;33(4):1430–1435. doi: 10.1021/jo01268a025
  • Hiatt R, Mill T, Irwin KC, et al. Homolytic decomposition of hydroperoxides. II. Radical-induced decomposition of t-butyl hydroperoxide. J Org Chem. 1968;33(4):1421–1428. doi: 10.1021/jo01268a023.
  • Hiatt R, Mill T, Irwin KC, et al. Homolytic decomposition of hydroperoxides. III. Radical-induced decomposition of primary and secondary hydroperoxides. J Org Chem. 1968;33(4):1428–1430. doi: 10.1021/jo01268a024.
  • Hiatt R, Mill T, Mayo FR. Homolytic decompositions of hydroperoxides. I. Summary and implications for autoxidation. J Org Chem. 1968;33(4):1416–1420. doi: 10.1021/jo01268a022.
  • Hiatt R, Gould CW, Mayo FR. Decomposition of hydroperoxides in oxidizing olefins. J Org Chem. 1964;29(12):3461–3467. doi: 10.1021/jo01035a004.
  • Bennett JE, Howard JA. Bimolecular self-reaction of peroxy radicals. Oxygen-18 isotope study. J Am Chem Soc. 1973;95(12):4008–4010. doi: 10.1021/ja00793a029.]
  • Kochi JK. Chemistry of alkoxyl radicals: cleavage reactions. J Am Chem Soc. 1962;84(7):1193–1197. doi: 10.1021/ja00866a026.
  • Walling C, Padwa A. A solvent effect in alkoxy radical decomposition. J Am Chem Soc. 1962;84(14):2845–2846. doi: 10.1021/ja00873a054.
  • Factor A, Russell CA, Traylor TG. Bimolecular combination reactions of oxy radicals. J Am Chem Soc. 1965;87(16):3692–3698. doi: 10.1021/ja01094a028.
  • Gaddis AM, Ellis R, Currie GT. Carbonyls in oxidizing fat. I. Separation of steam volatile monocarbonyls into classes. J Food Science. 1959;24(3):283–297. doi: 10.1111/j.1365-2621.1959.tb17274.x.
  • Gaddis AM, Ellis, REX. Carbonyls in oxidizing fat. II. The identity and amounts of steam volatile monocarbonyls in a rancid freezer-stored pork fat. J Food Science. 1959;24(4):392–400. doi: 10.1111/j.1365-2621.1959.tb17289.x.
  • Gaddis AM, Ellis REX, Currie GT. Carbonyls in oxidizing fat III. The distribution of’volatile and non-volatile carbonyls. J Food Science. 1960;25(4):495–506. doi: 10.1111/j.1365-2621.1960.tb00360.x.
  • Yu TC, Day EA, Sinnhuber RO. Autoxidation of fish oils. I. Identification of volatile monocarbonyl comounds from autoxidized salmon oil. J Food Science. 1961;26(2):192–197. doi: 10.1111/j.1365-2621.1961.tb00791.x.
  • Ellis R, Gaddis AM, Currie GT. Carbonyls in qxidizing fat. IV. The role of various fatty acid components in carbonyl generation. J Food Science. 1961;26(2):131–138. doi: 10.1111/j.1365-2621.1961.tb00782.x.
  • Gaddis AM, Ellis R, Currie GT. Carbonyls in oxidizing fat. V. The composition of neutral volatile monocarbonyl compounds from autoxidized oleate, linoleate, linolenate esters, and fats. J Americ Oil Chem Soc. 1961;38(7):371–375. doi: 10.1007/BF02633583.
  • Day EA. Autoxidation of milk lipids. J Dairy Sci. 1960;43(9):1360–1365. doi: 10.3168/jds.S0022-0302(60)90329-5.
  • Wyatt CJ, Day EA. Autoxidation of fish oils. II. Changes in the carbonyl distribution of autoxidizing salmon oils. J Food Science. 1963;28(3):305–312. doi: 10.1111/j.1365-2621.1963.tb00202.x.
  • Cobb WY, Day EA. Further observation on the dicarbonyl compounds formed via autoxidation of methyl linoleate. J Am Oil Chem Soc. 1965;42(12):1110–1112. doi: 10.1007/BF02636922.
  • Kwon TW, Olcott HS. Malonaldehyde from the autoxidation of methyl linolenate. Nature. 1966;210(5032):214–215. doi: 10.1038/210214a0.
  • Dahle LK, Hill EG, Holman RT. The thiobarbituric acid reaction and the autoxidation of polyunsaturated fatty acid methyl esters. Arch Biochem Biophys. 1962;98(2):253–261. doi: 10.1016/0003-9861(62)90181-9
  • Mookherjee RD, Chang SS. Characterization of the carbonyl compounds in reverted soybean oil. J Americ Oil Chem Soc. 1963;40(6):232–235. doi: 10.1007/BF02632666.
  • Allen RO. Volatile flavor constituents in coconut oil. Chem Ind. 1965;36(Sept 4):1560.
  • Schauenstein E. Autoxidation of polyunsaturated esters in water: chemical structure and biological activity of the products. J Lipid Res. 1967;8(5):417–428. doi: 10.1016/S0022-2275(20)38899-4.
  • Kochi JK. The mechanism of the copper salt catalysed reactions of peroxides. Tetrahedron. 1962;18(4):483–497. doi: 10.1016/S0040-4020(01)92696-1.
  • Kochi JK. Addition of peroxides to conjugated olefins catalyzed by copper salts. J Am Chem Soc. 1962;84(14):2785–2793. doi: 10.1021/ja00873a029.
  • Kamiya Y, Beaton S, Lafortune A, et al. The metal-catalyzed autoxidation of tetralin. II. The cobalt-catalyzed autoxidation of undiluted tetralin and of tetralin in chlorobenzene. Can J Chem. 1963;41(8):2034–2053. doi: 10.1139/v63-295.
  • Kamiya Y, Beaton S, Lafortune A, et al. The metal-catalyzed autoxidation of tetralin. I. Introduction. The cobalt-catalyzed autoxidation in acetic acid. Can J Chem. 1963;41(8):2020–2033. doi: 10.1139/v63-294.
  • Kochi J. The decomposition of peroxides catalyzed by copper compounds and the oxidation of alkyl radicals by cupric salts. J Am Chem Soc. 1963;85(13):1958–1968. doi: 10.1021/ja00896a014.
  • Harrod JF, Chalk AJ. Homogeneous catalysis. I. Double bond migration in n-olefins, catalyzed by group VIII metal complexes. J Am Chem Soc. 1964;86(9):1776–1779. doi: 10.1021/ja01063a024.
  • Kamiya Y, Ingold KU. The metal-catalyzed autoxidation of tetralin. III. Catalysis by manganese, copper, nickel, and iron. Can J Chem. 1964;42(5):1027–1043. doi: 10.1139/v64-159.
  • Kochi JK, Gilliom RD. Competition between intramolecular rearrangement of free radicals and oxidation by metal salts. J Am Chem Soc. 1964;86(23):5251–5256. doi: 10.1021/ja01077a042.
  • Ochiai E. Mechanism of catalysis by metal complexes in autoxidation of an olefin. Tetrahedron. 1964;20(8):1819–1829. doi: 10.1016/S0040-4020(01)98451-0.
  • Heaton FW, Uri N. The aerobic oxidation of unsaturated fatty acids and their esters: cobalt stearate-catalyzed oxidation of linoleic acid. J Lipid Res. 1961;2(2):152–160. doi: 10.1016/S0022-2275(20)39024-6.
  • Kochi JK. The copper catalyzed peroxide reactions. J Am Chem Soc. 1961;83(14):3162–3163. doi: 10.1021/ja01475a043.
  • Waters WA. The kinetics and mechanism of metal-catalyzed autoxidation. J Am Oil Chem Soc. 1971;48(9):427–433. doi: 10.1007/BF02544654.
  • Pekkarinen L. The effect of copper, manganese and cobalt acetates on the autoxidation of trans-9, trans-11-octadecadienoic acid acid in 90% v/v aqueous acetic acid. J Am Oil Chem Soc. 1972;49(6):354–356. doi: 10.1007/BF02633388.
  • Morita M, Tanaka M, Takayama Y, et al. Metal-requiring and non-metal-requiring catalysts in the autoxidation of methyl linolenate. J Am Oil Chem Soc. 1976;53(7):487–488. doi: 10.1007/BF02636819.
  • Allen JC, Farag RS, Crook EM. The metal-catalyzed oxidation of aqueous emulsions of linoleic acid and trilinolein. J Appl Biochem. 1979;1(1):1–15.
  • Labuza TP, Silver M, Cohn M, et al. Metal-catalyzed oxidation in the presence of water in foods. J Am Oil Chem Soc. 1971;48(10):527–531. doi: 10.1007/BF02544555.
  • Kasha M, Khan AU. Physics, chemistry and biology of singlet molecular oxygen. Ann NY Acad Sci. 1970;171(1):5–23. doi: 10.1111/j.1749-6632.1970.tb39294.x.
  • Rawls HR, Van Santen PJ. A possible role for singlet oxygen in the initiation of fatty acid autoxidation. J Americ Oil Chem Soc. 1970;47(4):121–125. doi: 10.1007/BF02640400.
  • Clements AH, Van den Engh RH, Frost DJ, et al. Participation of singlet oxygen in photosensitized oxidation of 1,4-dienoic systems and photooxidation of soybean oil. J Am Oil Chem Soc. 1973;50(8):325–330. doi: 10.1007/BF02641366.
  • Svingen BA, O'Neal FO, Aust SD. The role of superoxide and singlet oxygen in lipid peroxidation. Photochem Photobiol. 1978;28(4–5):803–809. doi: 10.1111/j.1751-1097.1978.tb07022.x.
  • Terao J, Matsushita S. The isomeric compositions of monohydroperoxides produced by oxidation of unsaturated fatty acids esters with singlet oxygen. J Food Process Preserv. 1980;3(4):329–337. doi: 10.1111/j.1745-4549.1980.tb00590.x.
  • Thomas MJ, Pryor WA. Singlet oxygen oxidation of methyl linoleate: isolation and characterization of the NaBH4-reduced products. Lipids. 1980;15(7):544–548. doi: 10.1007/BF02534228.
  • Terao J, Hirota Y, Kawakatsu M, et al. Structural analysis of hydroperoxides formed by oxidation of phosphatidylcholine with singlet oxygen. Lipids. 1981;16(6):427–432. doi: 10.1007/BF02535010.
  • Terao J, Matsushita S. The isomeric composition of hydroperoxides produced by oxidation of arachidonic acid with singlet oxygen. Agric Biol Chem. 1981;45(3):587–593. doi: 10.1080/00021369.1981.10864580.
  • Geoffroy M, Lambelet P, Richert P. Role of hydroxyl radicals and singlet oxygen in the formation of primary radicals in unsaturated lipids: a solid state electron paramagnetic resonance study. J Agric Food Chem. 2000;48(4):974–978. doi: 10.1021/jf990684y.
  • Nawar WW. Thermal degradation of lipids. J Agric Food Chem. 1969;17(1):18–21. doi: 10.1021/jf60161a012.
  • Bascetta E, Gunstone FD, Scrimgeour CM, et al. ESR observation of pentadienyl and allyl radicals on hydrogen abstraction from unsaturated lipids. J Chem Soc Chem Commun. 1982;(2):110–112. doi: 10.1039/c39820000110.
  • Schaich KM, Borg DC. Spin-trapping of oxy- and other radicals from the autoxidation of lipids. In: Rodgers MAJ, Powers EL, editors. Oxygen and oxy-radicals in chemistry and biology. New York: Academic Press; 1981. p.734–735.
  • Schaich KM, Borg DC. Solvent effects in the spin trapping of lipid oxyl radicals. Free Radic Res Commun. 1990;9(3–6):267–278. doi: 10.3109/10715769009145685.
  • Schaich KM, Borg DC. EPR studies in autoxidation in. In: Simic MG, Karel M, editors. Autoxidation in food and biological systems. New York: Plenum Publishing Corp; 1980. p. 45–70.
  • Chiba T, Fujimoto K, Kaneda T. Spin trapping of alkyl radicals generated in methyl esters of fatty acids. Agric Biol Chem. 1984;48(11):2701–2705. doi: 10.1080/00021369.1984.10866579.
  • Chiba T, Kaneda T. ESR spectra of peroxy radicals derived from unsaturated esters. Agric Biol Chem. 1984;48(10):2593–2594. doi: 10.1080/00021369.1984.10866553.
  • Chiba T, Fujimoto K, Kaneda T, et al. Radicals generated in autoxidized methyl linoleate by light irradiation. J Americ Oil Chem Soc. 1981;58(5):587–590. doi: 10.1007/BF02672370.
  • Elson IH, Mao SW, Kochi JK. Electron spin resonance study of addition of alkoxy radicals to olefins. J Am Chem Soc. 1975;97(2):335–341. doi: 10.1021/ja00835a018.
  • Hasegawa K, Patterson LK. Pulse radiolysis studies in model lipid systems: formation and behavior of peroxy radicals in fatty acids. Photochem Photobiol. 1978;28(4–5):817–823. doi: 10.1111/j.1751-1097.1978.tb07025.x.
  • Patterson LK, Hasegawa K. Pulse radiolysis studies in model lipid systems. The influence of aggregation on kinetic behavior of OH induced radicals in aqueous sodium linoleate. Ber Bunsenges Phys Chem. 1978;82(9):951–956. doi: 10.1002/bbpc.19780820951.
  • Small RD, Jr., Scaiano JC, Patterson LK. Radical processes in lipids. A laser photolysis study of t-butoxy radical reactivity toward fatty acids. Photochem Photobiol. 1979;29(1):49–51. doi: 10.1111/j.1751-1097.1979.tb09258.x.
  • Rao PS, Ayres SM, Mueller HS. Identity of peroxy radicals produced from arachidonic acid in oxygenated solutions as studied by pulse radiolysis technique. Biochem Biophys Res Commun. 1982;104(4):1532–1536. doi: 10.1016/0006-291x(82)91425-5
  • Bors W, Tait D, Michel C, et al. Reactions of alkoxyl radicals in aqueous solutions. Isr J Chem. 1984;24(1):17–24. doi: 10.1002/ijch.198400003.
  • Heijman MGJ, Nauta H, Levine YK. A pulse radiolysis study of the dienyl radical in oxygen-free linoleate solutions: time and linoleate concentration dependence. Radiat Phys Chem. 1985;26(1):73–82. doi: 10.1016/0146-5724(85)90036-6.
  • Bors W, Erben-Russ M, Saran M. Fatty acid peroxyl radicals: their generation and reactivities. Bioelectroch Bioener. 1987;18(1–3):37–49. doi: 10.1016/0302-4598(87)85006-7.
  • Garwood RF, Khambay BPS, Weedon BCL, et al. Allylic hydroperoxides from the autoxidation of methyl oleate. J Chem Soc Chem Commun. 1977;(11):364–365. doi: 10.1039/c39770000364.
  • Chan HW-S, Levett G. Oxidation of methyl oleate: separation of isomeric methyl hydroperoxyoctadecenoates and methyl hydroxylstearates by high performance liquid chromatography. Chem Ind. 1977;8(51):692–693. doi: 10.1002/chin.197751152.
  • Haslbeck F, Grosch W. Autoxidation of phenyl linoleate and phenyl oleate: HPLC analysis of the major and minor monohydroperoxides as phenyl hydroxystearates. Lipids. 1983;18(10):706–713. doi: 10.1007/BF02534537.
  • Terao J, Matsushita S. Geometrical isomers of monohydroperoxides formed by autoxidation of methyl linoleate. Agric Biol Chem. 1977;41(12):2401–2405. doi: 10.1080/00021369.1977.10862871.
  • Chan HW-S, Levett G. Autoxidation of methyl linoleate. Separation and analysis of isomeric mixtures of methyl linoleate hydroperoxides and methyl hydroxylinoleates. Lipids. 1977;12(1):99–104. doi: 10.1007/BF02532979.
  • Chan HW-S, Levett G. Autoxidation of methyl linolenate: analysis of methyl hydroxylinolenate isomers by high performance liquid chromatography. Lipids. 1977;12(10):837–840. doi: 10.1007/BF02533273.
  • Aliwarga T, Raccor BS, Lemaitre RN, et al. Enzymatic and free radical formation of cis- and trans- epoxyeicosatrienoic acids in vitro and in vivo. Free Radic Biol Med. 2017;112:131–140. doi: 10.1016/j.freeradbiomed.2017.07.015.
  • Funk MO, Isaac R, Porter NA. Free radical cyclization of unsaturated hydroperoxides. J Am Chem Soc. 1975;97(5):1281–1282. doi: 10.1021/ja00838a074.
  • Chan HW-S, Matthew JA, Coxon DT. A hydroperoxy-epidioxide from the autoxidation of a hydroperoxide of methyl linolenate. J Chem Soc Chem Commun. 1980;(5):235–236. doi: 10.1039/c39800000235.
  • Neff WE, Frankel EN, Weisleder D. High-pressure liquid chromatography of autoxidized lipids: II. Hydroperoxy-cyclic peroxides and other secondary products from methyl linolenate. Lipids. 1981;16(6):439–448. doi: 10.1007/BF02535012.
  • Neff WE, Frankel EN. Photosensitized oxidation of methyl linolenate monohydroperoxides: Hydroperoxy cyclic peroxides, dihydroperoxides and hydroperoxy bis-cyclic peroxides. Lipids. 1984;19(12):952–957. doi: 10.1007/BF02534731.
  • Peers KE, Coxon DT, Chan HW-S. Thermal decomposition of individual positional isomers of methyl linolenate hydroperoxides, hydroperoxy cyclic peroxides and dihydroperoxides. Lipids. 1984;19(4):307–313. doi: 10.1007/bf02534462.
  • Mihelich ED. Structure and stereochemistry of novel endoperoxides isolated from the sensitized photooxidation of methyl linoleate. Implications for prostaglandin biosynthesis. J Am Chem Soc. 1980;102(23):7141–7143. doi: 10.1021/ja00543a061.
  • Porter NA, Funk MO. Peroxy radical cyclization as a model for prostaglandin synthesis. J Org Chem. 1975;40(24):3614–3615. doi: 10.1021/jo00912a037.
  • Porter NA, Funk MO, Gilmore D, et al. The formation of cyclic peroxides from unsaturated hydroperoxides: models for prostaglandin biosynthesis. J Am Chem Soc. 1976;98(19):6000–6005. doi: 10.1021/ja00435a037.
  • Brash AR. Autoxidation of methyl linoleate: identification of the bis-allylic 11-hydroperoxide. Lipids. 2000;35(9):947–952. doi: 10.1007/s11745-000-0604-0.
  • Pratt DA, Tallman KA, Porter NA. Free radical oxidation of polyunsaturated lipids: new mechanistic insights and the development of peroxyl radical clocks. Acc Chem Res. 2011;44(6):458–467. doi: 10.1021/ar200024c.
  • Terao J, Matsushita S. Structures of monohydroperoxides produced from chlorophyll sensitized photooxidation of methyl linoleate. Agric Biol Chem. 1977;41(12):2467–2468. doi: 10.1080/00021369.1977.10862883.
  • Terao J, Matsushita S. Products formed by photosensitized oxidation of unsaturated fatty acid esters. J Americ Oil Chem Soc. 1977;54(6):234–238. doi: 10.1007/BF02655162.
  • Umehara T, Terao J, Matsushita S. Photosensitized oxidation of oils with food colors. J Agric Chem Soc Jpn. 1979;53:51–56.
  • Parr LJ, Swoboda, PAT. The assay of conjugable oxidation products applied to lipid deterioration in stored foods. J Fd Technol. 1976;11(1):1–12. doi: 10.1111/j.1365-2621.1976.tb00697.x.
  • Chan HW-S, Levett G, Matthew JA. The mechanism of the rearrangement of linolenate hydroperoxides. Chem Phys Lipids. 1979;24(3):245–256. doi: 10.1016/0009-3084(79)90030-6.
  • Porter NA, Nixon JR. Stereochemistry of free-radical substitution on the peroxide bond. J Am Chem Soc. 1978;100(22):7116–7117. doi: 10.1021/ja00490a079.
  • Porter NA, Weber BA, Weenen H, et al. Autoxidation of polyunsaturated lipids. Factors controlling the stereochemistry of product hydroperoxides. J Am Chem Soc. 1980;102(17):5597–5601. doi: 10.1021/ja00537a032.
  • Porter NA, Lehman LS, Weber BA, et al. Unified mechanism for polyunsaturated fatty acid autoxidation. Competition of peroxy radical hydrogen atom abstraction, β-scission, and cyclization. J Am Chem Soc. 1981;103(21):6447–6455. doi: 10.1021/ja00411a032.
  • Porter NA, Wujek JS. Allylic hydroperoxide rearrangement: β-scission or concerted pathway? J Org Chem. 1987;52(23):5085–5089. doi: 10.1021/jo00232a004.
  • Toyoda I, Terao J, Matsushita S. Hydroperoxides formed by ferrous ion-catalyzed oxidation of methyl linolenate. Lipids. 1982;17(2):84–90. doi: 10.1007/BF02535180.
  • Frankel EN, Neff WE, Selke E, et al. Thermal and metal-catalyzed decomposition of methyl linolenate hydroperoxides. Lipids. 1987;22(5):322–327. doi: 10.1007/BF02534000.
  • Selke E, Frankel EN, Neff WE. Thermal decomposition of methyl oleate hydroperoxides and identification of volatile components by gas chromatography-mass spectrometry. Lipids. 1978;13(7):511–513. doi: 10.1007/BF02533622.
  • Grosch W. Reactions of hydroperoxides – products of low molecular weight. In: Chan HW-S, editor. Autoxidation of unsaturated lipids. London: Academic Press; 1987 p. 95–139.
  • Gardner HW, Plattner RD. Linoleate hydroperoxides are cleaved heterolytically into aldehydes by a Lewis acid in aprotic solvent. Lipids. 1984;19(4):294–299. doi: 10.1007/bf02534458.
  • O'Brien PJ. Intracellular mechanisms for the decomposition of a lipid peroxide. I. Decomposition of a lipid peroxide by metal ions, heme compounds, and nucleophiles. Can J Biochem. 1969;47(5):485–492. doi: 10.1139/o69-076.
  • Śliwiok J, Kowalska T, Kowalski W, et al. The influence of hydrogen-bond association on the destruction of hydroperoxides in the autoxidation process of oleyl alcohol, oleic acid, and methyl oleate. Microchem J. 1974;19(4):362–372. doi: 10.1016/0026-265X(74)90025-3.
  • Uri N. Physico-chemical aspects of autoxidation. In: Lundberg WO, editor. Autoxidation and antioxidants. Vol. 1. New York: Interscience; 1961. p. 55–106.
  • Schaich KM, Shahidi F, Zhong Y, et al. Lipid oxidation. In: Eskin NAM, editor. Biochemistry of foods. Third Edition. Amsterdam: Elsevier; 2013. p. 419–478.
  • Kimoto WI, Gaddis AM. Monocarbonyl compounds from catalytic decomposition of autoxidized unsaturated fatty acid esters. J Americ Oil Chem Soc. 1974;51(7):307–311. doi: 10.1007/BF02633003.
  • Griffiths J. A brief history of mass spectrometry. Anal Chem. 2008;80(15):5678–5683. doi: 10.1021/ac8013065.
  • Frankel EN, Neff WE, Rohwedder WK, et al. Analysis of autoxidized fats by gas chromatography-mass spectrometry: III. Methyl linolenate. Lipids. 1977;12(12):1055–1061. doi: 10.1007/BF02533334.
  • Frankel EN, Neff WE, Rohwedder WK, et al. Analysis of autoxidized fats by gas chromatography-mass spectrometry: I. Methyl oleate. Lipids. 1977;12(11):901–907. doi: 10.1007/BF02533309.
  • Frankel EN, Neff WE, Rohwedder WK, et al. Analysis of autoxidized fats by gas chromatography-mass spectrometry: II. Methyl linoleate. Lipids. 1977;12(11):908–913. doi: 10.1007/bf02533310.
  • Neff WE, Frankel EN, Scholfield CR, et al. High-pressure liquid chromatography of autoxidized lipids: I. Methyl oleate and linoleate. Lipids. 1978;13(6):415–421. doi: 10.1007/BF02533711.
  • Frankel EN, Neff WE. Analysis of autoxidized fats by gas chromatography-mass spectrometry. IV. Soybean oil methyl esters. Lipids. 1979;14(1):39–46. doi: 10.1007/BF02533564.
  • Frankel EN, Neff WE, Selke E. Analysis of autoxidized fats by gas chromatography-mass spectrometry. IX. Homolytic vs heterolytic cleavage of primary and secondary oxidation products. Lipids. 1984;19(10):790–800. doi: 10.1007/BF02534473.
  • Neff WE, Frankel EN, Miyashita K. Autoxidation of polyunsaturated triacylglycerols. I. Trilinoleoylglycerol. Lipids. 1990;25(1):33–39. doi: 10.1007/BF02562425.
  • Frankel EN, Neff WE, Selke E, et al. Photosensitized oxidation of methyl linoleate: secondary and volatile thermal decomposition products. Lipids. 1982;17(1):11–18. doi: 10.1007/BF02535116.
  • Frankel EN, Neff WE, Selke E, et al. Analysis of autoxidized fats by gas chromatography-mass spectrometry: X. Volatile thermal decomposition products of methyl linolenate dimers. Lipids. 1988;23(4):295–298. doi: 10.1007/BF02537336.
  • Frankel EN, Neff WE. Formation of malonaldehyde from lipid oxidation products. Biochim Biophys Acta. 1983;754(3):264–270. doi: 10.1016/0005-2760(83)90141-8.
  • Ullrich F, Grosch W. Identification of the most intense odor compounds formed during autoxidation of methyl linolenate at room temperature. J Americ Oil Chem Soc. 1988;65(8):1313–1317. doi: 10.1007/BF02542413.
  • Buttery RG, Guadagni DG, Ling LC. Flavor compounds: volatiles in vegetable oil and oil-water mixtures. Estimation of odor thresholds. J. Agric. Food Chem. 1973;21(2):198–201. doi: 10.1021/jf60186a029.
  • Pokorny, J., El-Zeany, B.A., Luan, N., Janicek, G. 1976. Nonenzymic browning. XV. Effect of unsaturation on browning reactions of oxidized lipids with proteins, Z Lebensm Unters Forsch. 161(3), 271–272. doi: 10.1007/BF01105814.
  • Schaich KM, Karel M. Free radical reactions of peroxidizing lipids with amino acids and proteins: an ESR study. Lipids. 1976;11(5):392–400. doi: 10.1007/BF02532846.
  • Schaich KM. Free radical initiation in proteins and amino acids by ionizing and ultraviolet radiations and lipid oxidation-part III: free radical transfer from oxidizing lipids. Crit Rev Food Sci Nutr. 1980;13(3):189–244. doi: 10.1080/10408398009527290.
  • Schaich KM, Karel M. Free radicals in lysozyme reacted with peroxidizing methyl linoleate. J Food Science. 1975;40(3):456–459. doi: 10.1111/j.1365-2621.1975.tb12503.x.
  • Gamage PT, Mori T, Matsushita A. Mechanism of polymerization of proteins by autoxidized products of linoleic acid. J Nutr Sci Vitaminol. 1973;19(2):173–182. doi: 10.3177/jnsv.19.173.
  • Wolman M. Oxidation of lipids and membranes. I. In vitro formation of peroxidative polymers. J Supramol Struct. 1975;3(1):80–89. doi: 10.1002/jss.400030109.
  • Funes J, Karel M. Free radical polymerization and lipid binding of lysozyme reacted with peroxidizing linoleic acid. Lipids. 1981;16(5):347–350. doi: 10.1007/BF02534960.
  • Hochstein P, Jain SK. Association of lipid peroxidation and polymerization of membrane proteins with erythrocyte aging. Fed Proc. 1981;40(2):183–188.
  • Leake L, Karel M. Polymerization and denaturation of lysozyme exposed to peroxidizing lipids. J Food Science. 1982;47(3):737–743. doi: 10.1111/j.1365-2621.1982.tb12703.x.
  • Matoba T, Yoshida H, Yonezawa D. Changes in casein and egg albumin due to reactions with oxidizing methyl linoleate in dehydrated systems. Agric Biol Chem. 1982;46(4):979–986. doi: 10.1080/00021369.1982.10865186.
  • Matoba T, Kurita O, Yonezawa D. Changes in molecular size and chemical properties of gelatin caused by the reaction with oxidizing methyl linoleate. Agric Biol Chem. 1984;48(11):2633–2638. doi: 10.1080/00021369.1984.10866574.
  • Nielsen HK, Finot PA, Hurrell RF. Reactions of proteins with oxidizing lipids. 2. Influence on protein quality and on the bioavailability of lysine, methionine, cyst(e)ine and tryptophan as measured in rat assays. Br J Nutr. 1985;53(1):75–86. doi: 10.1079/bjn19850012.
  • Kanazawa K, Ashida H, Natake M. Autoxidizing process interaction of linoleic acid with casein. J Food Sci. 1987;52(2):475–479. doi: 10.1111/j.1365-2621.1987.tb06642.x.
  • Leaver J, Law AJR, Brechany EY. Covalent modification of emulsified β-casein resulting from lipid peroxidation. J Colloid Interface Sci. 1999;210(1):207–214. doi: 10.1006/jcis.1998.5944.
  • Tannenbaum SR, Barth H, Le Roux JP. Loss of methionine in casein during storage with autoxidizing methyl linoleate. J Agric Food Chem. 1969;17(6):1353–1354. doi: 10.1021/jf60166a019.
  • Matoba T, Yonezawa D, Nair BM, et al. Damage of amino acid residues of proteins after reaction with oxidizing lipids: estimation by proteolytic enzymes. J Food Sci. 1984;49(4):1082–1084. doi: 10.1111/j.1365-2621.1984.tb10397.x.
  • Horigome T, Yanagida T, Miura M. Nutritive value of proteins prepared by the reaction with oxidized ethyl linoleate in aqueous medium. J Agric Chem Soc Japan. 1974;48(3):195–199. doi: 10.1271/nogeikagaku1924.48.195.
  • Inouye S. Site-specific cleavage of double-strand DNA by hydroperoxide of linoleic acid. FEBS Lett. 1984;172(2):231–234. doi: 0.1016/0014-5793(84)81131-x doi: 10.1016/0014-5793(84)81131-x.
  • Ueda K, Kobayashi S, Morita J, et al. Site-specific DNA damage caused by lipid peroxidation products. Biochim Biophys Acta. 1985;824(4):341–348. doi: 10.1016/0167-4781(85)90041-7
  • Akasaka S. Inactivation of transforming activity of plasmid DNA by lipid peroxidation. Biochim Biophys Acta. 1986;867(4):201–208. doi: 10.1016/0167-4781(86)90035-7
  • Davídková E, Svadlenka I, Deyl Z. Interactions of malonaldehyde with collagen. IV. Localisation of malonaldehyde binding sites in collagen molecule. Z Lebensm Unters Forsch. 1975;158(5):279–283. doi: 10.1007/BF01525476.
  • Esterbauer H, Zollner H, Scholz N. Reaction of glutathione with conjugated carbonyls. Z Naturforsch C Biosci. 1975;30(4):466–473. doi: 10.1515/znc-1975-7-808.
  • Kanazawa K, Danno G, Natake M. Lysozyme damage caused by secondary degradation products during the autoxidation process of linoleic acid. J Nutr Sci Vitaminol. 1975;21(5):373–382. doi: 10.3177/jnsv.21.373.
  • Chander R, Sherekar SV, Gore MS. Studies on the inactivation of lysozyme by malonaldehyde. J Food Biochem. 1981;5(4):313–324. doi: 10.1111/j.1745-4514.1981.tb00681.x.
  • Damodaran S, Kinsella JE. Interaction of carbonyls with soy proteins: thermodynamic effects. J Agric Food Chem. 1981;29(6):1249–1253. doi: 10.1021/jf00108a037.
  • Damodaran S, Kinsella JE. Interaction of carbonyls with soy proteins: conformational effects. J Agric Food Chem. 1981;29(6):1253–1257. doi: 10.1021/jf00108a038.
  • Dillard CJ, Tappel AL. Fluorescent products from reaction of peroxidizing polyunsaturated fatty acids with phosphatidyl ethanolamine and phenylalanine. Lipids. 1973;8(4):183–189. doi: 10.1007/BF02544632.
  • Fletcher BL, Dillard CJ, Tappel AL. Measurement of fluorescent lipid peroxidation products in biological systems and tissues. Anal Biochem. 1973;52(1):1–9. doi: 10.1016/0003-2697(73)90327-8.
  • Malshet MG, Tappel AL. Fluorescent products of lipid peroxidation. I. Structural requirement for fluorescence in conjugated schiff bases. Lipids. 1973;8(4):194–198. doi: 10.1007/BF02544634.
  • Buttkus HA. Fluorescent lipid autoxidation products. J Agric Food Chem. 1975;23(4):823–825. doi: 10.1021/jf60200a052.
  • Shimasaki H, Privett OS, Hara I. Studies of the fluorescent products of lipid oxidation in aqueous emulsion with glycine and on the surface of silica gel. J Am Oil Chem Soc. 1977;54(3):119–123. doi: 10.1007/BF02894387.
  • Dillard CJ, Tappel AL. Fluorescent damage products of lipid peroxidation. Methods Enzymol. 1984;105:337–341. doi: 10.1016/s0076-6879(84)05044-8
  • Matsushita S, Kobayashi M, Nitta Y. Inactivation of enzymes by linoleic acid hydroperoxides and linoleic acid. Agric Biol Chem. 1970;34(6):817–824. doi: 10.1080/00021369.1970.10859695.
  • Gamage PT, Matsushita S. Interaction of autoxidized products of linoleic acid with enzyme proteins. Agric Biol Chem. 1973;37(1):1–8. doi: 10.1080/00021369.1973.10860636.
  • Matsushita S. Specific interactions of linoleic acid hydroperoxides and their secondary oxidation products with enzyme proteins. J Agric Food Chem. 1975;23(2):150–154. doi: 10.1021/jf60198a049.
  • Green RC, Little C, O'Brien PJ. The inactivation of isocitrate dehydrogenase by a lipid peroxide. Arch Biochem Biophys. 1971;142(2):598–605. doi: 10.1016/0003-9861(71)90524-8
  • Negishi H, Fujimoto K, Kaneda T. Effect of autoxidized methyl linoleate on glutathione peroxidase. J Nutr Sci Vitaminol. 1980;26(3):309–317. doi: 10.3177/jnsv.26.309.
  • McBrien DCH, Slater TF. Free radicals, lipid peroxidation, and cancer. London: Academic Press; 1982.
  • Arstila AU, Smith MA, Trump BF. Microsomal lipid peroxidation: morphological characterization. Science. 1972;175(4021):530–533. doi: 10.1126/science.175.4021.530.
  • Bird RP, Basrur PK, Alexander JC. Cytotoxicity of thermally oxidized fats. In Vitro. 1981;17(5):397–404. doi: 10.1007/BF02626739.
  • Younes M, Siegers CP. Interrelation between lipid peroxidation and other hepatotoxic events. Biochem Pharmacol. 1984;33(13):2001–2003. doi: 10.1016/0006-2952(84)90564-1
  • Comporti M. Lipid peroxidation and cellular damage in toxic liver injury. Lab Invest. 1985;53(6):599–623.
  • Cohen PJ, Chance B. Is chemiluminescence an index of hepatic lipoperoxidation accompanying chloroform anesthesia? Biochim Biophys Acta. 1986;884(3):517–519. doi: 10.1016/0304-4165(86)90203-5
  • Pryor WA. Free radical involvement in chronic diseases and aging: the toxicity of lipid hydroperoxides and their decomposition products. In: Finley JW, Schwass DE, editors. Xenobiotic metabolism: nutritional effects; 1985. Washington, DC: American Chemical Soc, p. 76–96.
  • Dexter DT, Carter CJ, Wells FR, et al. Basal lipid peroxidation in substantia nigra is increased in Parkinson’s disease. J Neurochem. 1989;52(2):381–389. doi: 10.1111/j.1471-4159.1989.tb09133.x.
  • Cadenas E, Brigelius R, Sies H. Paraquat-induced chemiluminescence of microsomal fractions. Biochem Pharmacol. 1983;32(1):147–150. doi: 10.1016/0006-2952(83)90667-6.
  • Stohs SJ, Hassan MQ, Murray WJ. Lipid peroxidation as a possible cause of TCDD toxicity. Biochem Biophys Res Commun. 1983;111(3):854–859. doi: 10.1016/0006-291x(83)91377-3.
  • Fukuzumi K. Significance of lipoperoxides in gastric cancer. Fette Seifen Anstrichm. 1970;72(10):853–855. doi: 10.1002/lipi.19700721003.
  • Abbot GG, Gunstone FD, Hoyes SD. Fatty acids, part 27: the formation of 1,4-epoxides from methyl linoleate and related esters by reaction with toluene-p-sulphonic acid and an appropriate solvent. Chem Phys Lipids. 1970;4(3):351–366. doi: 10.1016/0009-3084(70)90035-6.
  • Brill WF. The origin of epoxides in the liquid phase oxidation of olefins with molecular oxygen. J Am Chem Soc. 1963;85(2):141–145. doi: 10.1021/ja00885a006.
  • Brill WF. Selectivity in the liquid phase autoxidation of olefins. In Fields, EK, editor. Selective oxidation processes. Washington D.C.: American Chemical Society; 1965. p. 70–80.
  • Fioriti JA, Bentz AP, Sims RJ. The reaction of picric acid with epoxides. II. The detection of epoxides in heated oils. J Am Oil Chem Soc. 1966;43(8):487–490. doi: 10.1007/BF02641272.
  • Kleiman R, Spencer GF. Gas chromatography-mass spectrometry of methyl esters of unsaturated oxygenated fatty acids. J Americ Oil Chem Soc. 1973;50(2):31–38. doi: 10.1007/BF02886864.
  • Minnikin DE. Location of double bonds and cyclopropane rings in fatty acids by mass spectrometry. Chem Phys Lipids. 1978;21(4):313–347. doi: 10.1016/0009-3084(78)90045-2.
  • Bierl BA, Beroza M. Electron-impact mass spectrometry for location of epoxide position in long chain vic-dialkyl and trialkyl epoxides. J Americ Oil Chem Soc. 1974;51(10):466–469. doi: 10.1007/BF02635156.
  • Gardner HW, Kleiman R. A soy extract catalyzes formation of 9-oxo-trans-12,13-epoxy-trans-10-octadecenoic acid from 13-hydroperoxy-cis-9,trans-11-octadecadienoic acid. Lipids. 1977;12(11):941–944. doi: 10.1007/bf02533315.
  • Gardner HW, Weisleder D, Kleiman R. Formation of trans-12,13-epoxy-9-hydroperoxy-trans-10-octadecadienoic acid catalyzed by either a soybean extract or cysteine-FeCl3. Lipids. 1978;13(4):246–252. doi: 10.1007/BF02533664.
  • Hamberg M, Gotthammar B. A new reaction of unsaturated fatty acid hydroperoxides: formation of 11-hydroxy-12,13-epoxy-9-octadecenoic acid from 13-hydroperoxy-9,11-octadecadienoic acid. Lipids. 1973;8(12):737–744. doi: 10.1007/BF02531842.
  • Wu G-S, Stein RA, Mead JF. Autoxidation of fatty acid monolayers adsorbed on silica gel: II. Rates and products. Lipids. 1977;12(11):971–978. doi: 10.1007/BF02533320.
  • Mead JF. Membrane lipid peroxidation and its prevention. J Americ Oil Chem Soc. 1980;57(12):393–397. doi: 10.1007/BF02678922.
  • Sevanian A, Mead JF, Stein RA. Epoxides as products of lipid autoxidation in rat lungs. Lipids. 1979;14(7):634–643. doi: 10.1007/BF02533449.
  • Wade DR, Airy SC, Sinsheimer JE. Mutagenicity of aliphatic epoxides. Mutat Res. 1978;58(2–3):217–223. doi: 10.1016/0165-1218(78)90012-5.
  • Ehrenberg L, Hussain S. Genetic toxicity of some important epoxides. Mutat Res. 1981;86(1):1–113. doi: 10.1016/0165-1110(81)90034-8.
  • Gardner HW, Kleiman R. Degradation of linoleic acid hydroperoxides by a cysteine-FeCl3 catalyst as a model for similar biochemical reactions. II. Specificity in formation of fatty acid epoxides. Biochim Biophys Acta. 1981;665(1):113–124. doi: 10.1016/0005-2760(81)90239-3.
  • Gardner HW, Weisleder D, Nelson EC. Acid catalysis of a linoleic acid hydroperoxide: formation of epoxides by an intramolecular cyclization of the hydroperoxide group. J. Org. Chem. 1984;49(3):508–515. doi: 10.1021/jo00177a024.
  • Gardner HW, Plattner RD, Weisleder D. The epoxyallylic radical from homolysis and rearrangement of methyl linoleate hydroperoxide combines with the thiyl radical of N-acetylcysteine. Biochim Biophys Acta. 1985;834(1):65–74. doi: 10.1016/0005-2760(85)90177-8.
  • Dix TA, Marnett LJ. Hematin-catalyzed rearrangement of hydroperoxylinoleic acid to epoxy alcohols via an oxygen rebound. J. Am. Chem. Soc. 1983;105(23):7001–7002. doi: 10.1021/ja00361a063.
  • Dix TA, Marnett LJ. Conversion of linoleic acid hydroperoxide to hydroxy, keto, epoxyhydroxy, and trihydroxy fatty acids by hematin. J Biol Chem. 1985;260(9):5351–5357. doi: 10.1016/S0021-9258(18)89028-7.
  • Jahn U, Galano J-M, Durand T. Beyond prostaglandins – chemistry and biology of cyclic oxygenated metabolites formed by free-radical pathways from polyunsaturated fatty acids. Angew Chem Int Ed Engl. 2008;47(32):5894–5955. doi: 10.1002/anie.200705122.
  • Hajeyah AA, Griffiths WJ, Wang Y, et al. The biosynthesis of enzymatically oxidized lipids. Front. Endocrinol. 2020;11:591819. doi: 10.3389/fendo.2020.591819.
  • O'Brien PJ, Siraki AG, Shangari N. Aldehyde sources, metabolism, molecular toxicity mechanisms, and possible effects on human health. Crit Rev Toxicol. 2005;35(7):609–662. doi: 10.1080/10408440591002183.
  • Sottero B, Rossin D, Poli G, et al. Lipid oxidation products in the pathogenesis of inflammation-related gut diseases. Curr Med Chem. 2018;25(11):1311–1326. doi: 10.2174/0929867324666170619104105.
  • Mano J. Reactive carbonyl species: their production from lipid peroxides, action in environmental stress, and the detoxification mechanism. Plant Physiol Biochem. 2012;59(Oct):90–97. doi: 10.1016/j.plaphy.2012.03.010.
  • Mol M, Regazzoni L, Altomare A, et al. Enzymatic and non-enzymatic detoxification of 4-hydroxynonenal: methodological aspects and biological consequences. Free Radic Biol Med. 2017;111(Oct):328–344. doi: 10.1016/j.freeradbiomed.2017.01.036.
  • Srivastava SK, Ramana KV, Srivastava S, et al. Aldose reductase detoxifies lipid aldehydes and their glutathione conjugates. In: Penning TM, Petrash JM, editors. Aldo-keto reductases and toxicant metabolism. Washington D.C.: American Chemical Society; 2003. p. 37–48.
  • Alary J, Gueraud F, Cravedi JP. Fate of 4-hydroxynonenal in vivo: disposition and metabolic pathways. Mol Aspects Med. 2003;24(4–5):177–187. doi: 10.1016/s0098-2997(03)00012-8.
  • Schaich KM. Toxicity of lipid oxidation products consumed in the diet. In: Shahidi F editor. Bailey’s industrial oil and fat products. 7th Edition. Hoboken, NJ: John Wiley & Sons, Ltd.; 2020. p. 1–88.
  • Niki E. Chapter 14 – dual stressor effects of lipid oxidation and antioxidants. In: Sies H, editor. Oxidative stress. London, UK: Academic Press; 2020. p. 249–262.
  • Leonarduzzi G, Arkan MC, Başağa H, et al. Lipid oxidation products in cell signaling, free. Free Radic Biol Med. 2000;28(9):1370–1378. doi: 10.1016/s0891-5849(00)00216-1.
  • Niki E. Do antioxidants impair signaling by reactive oxygen species and lipid oxidation products? FEBS Lett. 2012;586(21):3767–3770. doi: 10.1016/j.febslet.2012.09.025.
  • Yadav UCS, Ramana KV. Regulation of NF-B-induced inflammatory signaling by lipid peroxidation-derived aldehydes. Oxid Med Cell Longev. 2013;2013:690511–690545. doi: 10.1155/2013/690545.
  • Ayala A, Muñoz MF, Argüelles S. Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxid Med Cell Longev. 2014;2014:360431–360438. doi: 10.1155/2014/360438.
  • Wagner K, Vito S, Inceoglu B, et al. The role of long chain fatty acids and their epoxide metabolites in nociceptive signaling. Prostaglandins Other Lipid Mediat. 2014;113–115(Oct):2–12. doi: 10.1016/j.prostaglandins.2014.09.001.
  • Schneider C, Boeglin WE, Yin H, et al. Intermolecular peroxyl radical reactions during autoxidation of hydroxy and hydroperoxy arachidonic acids generate a novel series of epoxidized products. Chem Res Toxicol. 2008;21(4):895–903. doi: 10.1021/tx700357u.
  • Xia W, Budge SM, Lumsden MD. 1H-NMR characterization of epoxides derived from polyunsaturated fatty acids. J Americ Oil Chem Soc. 2016;93(4):467–478. doi: 10.1007/s11746-016-2800-2.
  • Mubiru E, Jacxsens L, Papastergiadis A, et al. Exposure assessment of epoxy fatty acids through consumption of specific foods available in Belgium. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 2017;34(6):1000–1011. doi: 10.1080/19440049.2017.1310399.
  • Nieva-Echevarría B, Goicoechea E, Guillén MD. Behaviour of non-oxidized and oxidized flaxseed oils, as models of omega-3 rich lipids, during in vitro digestion. Occurrence of epoxidation reactions. Food Res Int. 2017;97:104–115. doi: 10.1016/j.foodres.2017.03.047.
  • Xia W, Budge SM. Simultaneous quantification of epoxy and hydroxy fatty acids as oxidation products of triacylglycerols in edible oils. J Chromatogr A. 2018;1537(Feb):83–90. doi: 10.1016/j.chroma.2017.12.066.
  • Grüneis V, Fruehwirth S, Zehl M, et al. Simultaneous analysis of epoxidized and hydroperoxidized triacylglycerols in canola oil and margarine by LC-MS. J Agric Food Chem. 2019;67(36):10174–10184. doi: 10.1021/acs.jafc.9b03601.s
  • Boerkamp VJP, Merkx DWH, Wang J, et al. Quantitative assessment of epoxide formation in oil and mayonnaise by 1H-13C HSQC NMR spectroscopy. Food Chem. 2022;390(Oct):133145. doi: 10.1016/j.foodchem.2022.133145.
  • Maerker G, Haeberer ET, Ault WC. Epoxidation of methyl linoleate. I. The question of positional selectivity in monoepoxidation. J Americ Oil Chem Soc. 1966;43(2):100–104. doi: 10.1007/BF02641026.
  • Pryor WA. Oxy-radicals and related species: their formation, lifetimes and reactions. Annu Rev Physiol. 1986;48(1):657–667. doi: 10.1146/annurev.ph.48.030186.003301.
  • Hiatt R, McCarrick T. On "bimolecular initiation" by hydroperoxides. J Am Chem Soc. 1975;97(18):5234–5237. doi: 10.1021/ja00851a035.
  • Lewis SE, Mayo FR. Copolymerization. IX. A comparison of some cis and trans isomers. J. Am. Chem. Soc. 1948;70(4):1533–1536. doi: 10.1021/ja01184a071.
  • Iwahashi H, Parker CE, Mason RP, et al. Radical adducts of nitrosobenzene and 2-methyl-2-nitrosopropane with 12,13-epoxylinoleic acid radical, 12,13-epoxylinolenic acid radical and 14,15-epoxyarachidonic acid radical. Identification by H.P.L.C.-E.P.R. and liquid chromatography-thermospray-M.S. Biochem J. 1991;276(Pt 2):447–453. doi: 10.1042/bj2760447.
  • Gardner HW, Jursinic PA. Degradation of linoleic acid hydroperoxides by a cysteine FeCl3 catalyst as a model for similar biochemical reactions: I. Study of oxygen requirement, catalyst and effect of pH. Biochim Biophys Acta. 1981;665(1):100–112. doi: 10.1016/0005-2760(81)90238-1.
  • Gardner HW, Crawford CG. Degradation of linoleic acid hydroperoxides by a cysteine-FeCl3 catalyst as a model for similar biochemical reactions. III. A novel product, trans-12,13-epoxy-11-oxo-trans-9-octadecenoic acid, from 13-L (S)-hydroperoxy-cis-9,trans-11-octadecadienoic acid. Biochim Biophys Acta. 1981;665(1):126–133. doi: 10.1016/0005-2760(81)90240-x.
  • Wilcox AL, Marnett LJ. Polyunsaturated fatty acid alkoxyl radicals exist as carbon-centered epoxyallylic radicals: a key step in hydroperoxide-amplified lipid peroxidation. Chem Res Toxicol. 1993;6(4):413–416. doi: 10.1021/tx00034a003.
  • Overend R, Paraskevopoulos G. Rates of hydroxyl radical reactions. 4. Reactions with methanol, ethanol, 1-propanol, and 2-propanol at 296 K. J Phys Chem. 1978;82(12):1329–1333. doi: 10.1021/j100501a001.
  • Chung FL, Chen HJ, Guttenplan JB, et al. 2,3-Epoxy-4-hydroxynonanal as a potential tumor-initiating agent of lipid peroxidation. Carcinogenesis. 1993;14(10):2073–2077. doi: 10.1093/carcin/14.10.2073.
  • Manini P, Briganti S, Fabbri C, et al. Free radical oxidation of 15-(S)-hydroxyeicosatetraenoic acid with the Fenton reagent: characterization of an epoxy-alcohol and cytotoxic 4-hydroxy-2E-nonenal from the heptatrienyl radical pathway. Chem Phys Lipids. 2006;142(1–2):14–22. doi: 10.1016/j.chemphyslip.2006.02.015.
  • Haynes RK, Vonwiller SC. Iron(III) and copper(II) catalyzed transformation of fatty acid hydroperoxides: efficient generation of peroxy radicals with Cu(II) trifluoromethane sulfonate. J Chem Soc Chem Commun. 1990;(16):1102–1104. doi: 10.1039/c39900001102.
  • Hiatt RR, Howe GR. Metal-catalyzed hydroperoxide reactions. II. Molybdenum-catalyzed epoxidations of styrene and some substituted styrenes. J Org Chem. 1971;36(17):2493–2497. doi: 10.1021/jo00816a024.
  • Miyaura N, Kochi JK. Chromyl complexes in the direct epoxidation of alkenes. J Am Chem Soc. 1983;105(8):2368–2378. doi: 10.1021/ja00346a044.
  • Samsel EG, Srinivasan K, Kochi JK. Mechanism of the chromium-catalyzed epoxidation of olefins. Role of oxochromium(V) cations. J Am Chem Soc. 1985;107(25):7606–7617. doi: 10.1021/ja00311a064.
  • Srinivasan K, Michaud P, Kochi JK. Epoxidation of olefins with cationic (salen)manganese(III) complexes. The modulation of catalytic activity by substituents. J Am Chem Soc. 1986;108(9):2309–2320. doi: 10.1021/ja00269a029.
  • Koola JD, Kochi JK. Nickel catalysis of olefin epoxidation. Inorg. Chem. 1987;26(6):908–916. doi: 10.1021/ic00253a026.
  • Cai SF, Wang LS, Fan CL. Catalytic epoxidation of a technical mixture of methyl oleate and methyl linoleate in ionic liquids using MoO(O2)2.2QOH (QOH = 8-quinilinol) as catalyst and NaHCO3 as co-catalyst. Molecules. 2009;14(8):2935–2946. doi: 10.3390/molecules14082935.
  • Adam W, Braun M, Griesbeck A, et al. Photooxygenation of olefins in the presence of titanium(IV) catalyst. A convienient "one-pot" synthesis of epoxy alcohols. J Am Chem Soc. 1989;111(1):203–212. doi: 10.1021/ja00183a032.
  • Kaminski DI, Temkin ON, Bonchev DG. Reaction network for the epoxidation reaction of alkenes with organic hydroperoxides. Appl Catal A. 1992;88(1):1–22. doi: 10.1016/0926-860X(92)80193-G.
  • Nam W, Han HJ, Oh S-Y, et al. New insights into the mechanism of O–O bond cleavage of hydrogen peroxide and tert-alkyl hydroperoxides by iron(III) porphyrin complexes. J Am Chem Soc. 2000;122(36):8677–8684. doi: 10.1021/ja994403e.
  • Nam W, Lim MH, Lee HJ, et al. Evidence for the participation of two distinct reactive intermediates in iron(III) porphyrin complex-catalyzed epoxidation reactions. J Am Chem Soc. 2000;122(28):6641–6647. doi: 10.1021/ja000289k.
  • Pace-Asciak CR. Arachidonic acid epoxides. Demonstration through [18O]oxygen studies of an intramolecular transfer of the terminal hydroxyl group of (12S)-hydroperoxyeicosa-5,8,10,14-tetraenoic acid to form hydroxyepoxides. J Biol Chem. 1984;259(13):8332–8337. doi: 10.1016/S0021-9258(17)39732-6.
  • Dix TA, Marnett LJ. Free radical epoxidation of 7,8-dihydroxy-7,8-dihydrobenzo[a]pyrene by hematin and polyunsaturated fatty acid hydroperoxides. J Am Chem Soc. 1981;103(22):6744–6746. doi: 10.1021/ja00412a037.
  • Chang MS, Boeglin WE, Guengerich FP, et al. Cytochrome P450-dependent transformations of 15R- and 15S-hydroperoxyeicosatetraenoic acids: stereoselective formation of epoxy alcohol products. Biochemistry. 1996;35(2):464–471. doi: 10.1021/bi952081v.
  • Boeglin WE, Brash AR. Cytochrome P450-type hydroxylation and epoxidation in a tyrosine-liganded hemoprotein, catalase-related allene oxide synthase. J Biol Chem. 2012;287(29):24139–24147. doi: 10.1074/jbc.M112.364216.
  • Brash AR. Mechanistic aspects of CYP74 allene oxide synthases and related cytochrome P450 enzymes. Phytochemistry. 2009;70(13–14):1522–1531. doi: 10.1016/j.phytochem.2009.08.005.
  • Glickman MH, Klinman JP. Lipoxygenase reaction mechanism: demonstration that hydrogen abstraction from substrate precedes dioxygen binding during catalytic turnover. Biochemistry. 1996;35(39):12882–12892. doi: 10.1021/bi960985q.
  • Gardner H. Lipid enzymes: lipases, lipoxygenases, and “hydroperoxidases”. In: Simic MG, Karel M, editors. Autoxidation in food and biological systems. Boston, MA: Springer; 1980. p 447–504.
  • Singh P, Arif Y, Miszczuk E, et al. Specific roles of lipoxygenases in development and responses to stress in plants. Plants. 2022;11(7):979. doi: 10.3390/plants11070979.
  • Hsieh RJ. Contribution of lipoxygenase pathway to food flavors. In: Lipids in food flavors, ACS symposium series #558. Washington DC: American Chemical Society; 1994. p. 30–48.
  • Garssen GJ, Veldink GA, Vliegenthart JF, et al. The formation of threo-11-hydroxy-trans-12: 13-epoxy-9-cis-octadecenoic acid by enzymic isomerisation of 13-L-hydroperoxy-9-cis, 11-transoctadecadienoic acid by soybean lipoxygenase-1. Eur J Biochem. 1976;62(1):33–36. doi: 10.1111/j.1432-1033.1976.tb10094.x.
  • Walther U, Spiteller G. Zur bildung von ölsäureepoxid bei der lagerung technischer ölsäure. Fett/Lipid. 1993;95(12):472–474. doi: 10.1002/lipi.19930951207.
  • Hampson JW, Herb SF, Magidman P. Autoxidation of fatty materials in emulsion. III. Application of GLC and TLC to studies of the histidine-catalyzed autoxidation of methyl oleate. J Americ Oil Chem Soc. 1968;45(6):443–447. doi: 10.1007/BF02655504.
  • Schieberle P, Tsoukalas B, Grosch W. Decomposition of linoleic acid hydroperoxides by radicals. Z Lebensm Unters Forch. 1979;168(6):448–456. doi: 10.1007/BF01479259.
  • Lercker G, Rodriguez-Estrada MT, Bonoli M. Analysis of the oxidation products of cis- and trans-octadecenoate methyl esters by capillary gas chromatography–ion-trap mass spectrometry: I. Epoxide and dimeric compounds. J Chromatogr A. 2003;985(1–2):333–342. doi: 10.1016/S0021-9673(02)01466-8.
  • Van Sickle DE, Mayo FR, Gould ES, et al. Effects of experimental variables in oxidations of alkenes. J Am Chem Soc. 1967;89(4):977–984. doi: 10.1021/ja00980a040.
  • Xie J. Evidence for multiple oxidation pathways from non-volatile products of methyl linoleate [PhD dissertation]. New Brunswick, NJ: Food Science, Rutgers University; 2015.
  • Neff WE, Byrdwell C. Characterization of model triacylglycerol (triolein, trilinolein and trilinolenin) autoxidation products via high-performance liquid chromatography coupled with atmospheric pressure chemical ionization mass spectrometry. J. Chrom. A. 1998;818(2):169–186. doi: 10.1016/S0021-9673(98)00553-6.
  • Byrdwell WC, Neff WE. Non-volatile products of triolein produced at frying temperatures characterized using liquid chromatography with online mass spectrometric detection. J Chromatogr A. 1999;852(2):417–432. doi: 10.1016/S0021-9673(99)00529-4.
  • Byrdwell WC, Neff WE. Autoxidation products of normal and genetically modified canola oil varieties determined using liquid chromatography with mass spectrometric detection. J Chromatogr A. 2001;905(1–2):85–102. doi: 10.1016/S0021-9673(00)00958-4.
  • Guillen MD, Goicoechea E. Formation of oxygenated α,β-unsaturated aldehydes and other toxic compounds in sunflower oil oxidation at room temperature in closed receptacles. Food Chem. 2008;111(1):157–164. doi: 10.1016/j.foodchem.2008.03.052.
  • Zeb A. Triacylglycerols composition, oxidation and oxidation compounds in camellia oil using liquid chromatography–mass spectrometry. Chem Phys Lipids. 2012;165(5):608–614. doi: 10.1016/j.chemphyslip.2012.03.004.
  • Goicoechea E, Guillen MD. Analysis of hydroperoxides, aldehydes and epoxides by 1H nuclear magnetic resonance in sunflower oil oxidized at 70 and 100 °C. J Agric Food Chem. 2010;58(10):6234–6245. doi: 10.1021/jf1005337.
  • Hwang H-S, Winkler-Moser JK, Liu SX. Reliability of 1H NMR analysis for assessment of lipid oxidation at frying temperatures. J Americ Oil Chem Soc. 2017;94(2):257–270. doi: 10.1007/s11746-016-2945-z.
  • Martin-Rubio AS, Sopelana P, Ibargoitia ML, et al. 1H NMR study of the in vitro digestion of highly oxidized soybean oil and the effect of the presence of ovalbumin. Foods. 2021;10(7):1573. doi: 10.3390/foods10071573.
  • Gardner DR, Sanders RA, Henry DE, et al. Characterization of used frying oils. Part 1: Isolation and identification of compound classes. J Americ Oil Chem Soc. 1992;69(6):499–508. doi: 10.1007/BF02636099.
  • Giuffrida F, Destaillats F, Robert F, et al. Formation and hydrolysis of triacylglycerol and sterols epoxides: role of unsaturated triacylglycerol peroxyl radicals, free. Free Radic Biol Med. 2004;37(1):104–114. doi: 10.1016/j.freeradbiomed.2004.04.004.
  • Giuffrida F, Destaillats F, Skibsted LH, et al. Structural analysis of hydroperoxy- and epoxy-triacylglycerols by liquid chromatography mass spectrometry. Chem Phys Lipids. 2004;131(1):41–49. doi: 10.1016/j.chemphyslip.2004.03.008.
  • Spencer GF, Earle FR, Wolff IA, et al. Oxygenation of unsaturated fatty acids in seeds during storage. Chem Phys Lipids. 1973;10(2):191–202. doi: 10.1016/0009-3084(73)90016-9.
  • Doehlert DC, Angelikousis S, Vick B. Accumulation of oxygenated fatty acids in oat lipids during storage. Cereal Chem. 2010;87(6):532–537. doi: 10.1094/CCHEM-05-10-0074.
  • Dudda A, Spiteller G, Kobelt F. Lipid oxidation products in ischemic porcine heart tissue. Chem Phys Lipids. 1996;82(1):39–51. doi: 10.1016/0009-3084(96)02557-1.
  • Weiny JA, Boeglin WE, Calcutt MW, et al. Monolayer autoxidation of arachidonic acid to epoxyeicosatrienoic acids as a model of their potential formation in cell membranes. J Lipid Res. 2022;63(1):100159–101168. doi: 10.1016/j.jlr.2021.100159.
  • Lederer MO. Reactivity of lysine moieties toward γ-hydroxy-α,β-unsaturated epoxides: a model study on protein-lipid oxidation product interaction. J Agric Food Chem. 1996;44(9):2531–2537. doi: 10.1021/jf950837r.
  • Lederer MO, Schuler A, Ohmenhäuser M. Reactivity of lysine moieties toward an epoxyhydroxylinoleic acid derivative: aminolysis vs. hydrolysis. J Agric Food Chem. 1999;47(11):4611–4620. doi: 10.1021/jf990383o.
  • Ege SN. Organic chemistry: structure and reactivity. Boston: Houghton Mifflin; 1999. p. 517–518, 631–654, 692–693, 725–733.
  • McMurray J. 2000. Organic chemistry. Pacific Grove, CA: Brooks/Cole.
  • Schaich KM. Co-oxidations of oxidizing lipids: reactions with proteins. In: Kamal-Eldin A, Min DB, editors. Lipid oxidation pathways. Volume 2. Boca Raton, FL: CRC Press; 2008. p. 183–274.
  • Hidalgo FJ, Zamora R. Modification of bovine serum albumin structure following reaction with 4,5(E)-epoxy-2-(E)-heptenal. Chem Res Toxicol. 2000;13(6):501–508. doi: 10.1021/tx990205p.
  • Jian W, Arora JS, Oe T, et al. Induction of endothelial cell apoptosis by lipid hydroperoxide-derived bifunctional electrophiles. Free Radic Biol Med. 2005;39(9):1162–1176. doi: 10.1016/j.freeradbiomed.2005.06.008.
  • Koskinen M, Plná K. Specific DNA adducts induced by some mono-substituted epoxides in vitro and in vivo. Chem Biol Interact. 2000;129(3):209–229. doi: 10.1016/s0009-2797(00)00206-4.
  • Lee SH, Oe T, Blair IA. Vitamin C-induced decomposition of lipid hydroperoxides to endogeneous genotoxins. Science. 2001;292(5524):2083–2086. doi: 10.1126/science.1059501.
  • Blair IA. Lipid hydroperoxide-mediated DNA damage. Exp Gerontol. 2001;36(9):1473–1481. doi: 10.1016/s0531-5565(01)00133-4.
  • Gardner HW, Crawford CG, MacGregor JT. Negative Ames tests of epoxide fatty methyl esters derived from hemolysis of linoleic acid hydroperoxides. Food Chem Toxicol. 1983;21(2):175–180. doi: 10.1016/0278-6915(83)90233-8.
  • U.S. Consumer Product Safety Commission. 2019. CPSC staff statement on University of Cincinnati report “Toxicity review for epoxidized soybean oil (ESBO)”. Bethesda, MD.
  • Hayakawa M, Sugiyama S, Takamura T, et al. Neutrophils biosynthesize leukotoxin, 9,10-epoxy-12-octadecenoate. Biochem Biophys Res Commun. 1986;137(1):424–430. doi: 10.1016/0006-291X(86)91227-1.
  • Greene JF, Newman JW, Williamson KC, et al. Toxicity of epoxy fatty acids and related compounds to cells expressing human soluble epoxide hydrolase. Chem Res Toxicol. 2000;13(4):217–226. doi: 10.1021/tx990162c.
  • Ozawa T, Hayakawa M, Kosaka K, et al. 1993. Leukotoxin, a linoleate epoxide, and severe inflammation. In: Nigam S, Honn KV, Marnett LJ, Walden TL, editors. Eicosanoids and other bioactive lipids in cancer, inflammation and radiation injury. Boston, MA: Springer US; 1993. p. 271–274.
  • Hayakawa M, Kosaka K, Sugiyama S, et al. Proposal of leukotoxin, 9,10-epoxy-12-octadecenoate, as a burn toxin. Biochem Int. 1990;21(3):573–579.
  • Kosaka K, Suzuki K, Hayakawa M, et al. Leukotoxin, a linoleate epoxide: its implication in the late death of patients with extensive burns. Mol Cell Biochem. 1994;139(2):141–148. doi: 10.1007/bf01081737.
  • Frömel T, Naeem Z, Pirzeh L, et al. Cytochrome P450-derived fatty acid epoxides and diols in angiogenesis and stem cell biology. Pharmacol Ther. 2022;234(June):108049. doi: 10.1016/j.pharmthera.2021.108049.
  • Zhang G, Kodani S, Hammock BD. Stabilized epoxygenated fatty acids regulate inflammation, pain, angiogenesis and cancer. Prog Lipid Res. 2014;53:108–123. doi: 10.1016/j.plipres.2013.11.003.
  • Blee E, Schuber F. Stereochemistry of the epoxidation of fatty acids catalyzed by soybean peroxygenase. Biochem Biophys Res Commun. 1990;173(3):1354–1360. doi: 10.1016/S0006-291X(05)80937-4.
  • Blée E, Schuber F. Efficient epoxidation of unsaturated fatty acids by a hydroperoxide-dependent oxygenase. J Biol Chem. 1990;265(22):12887–12894. doi: 10.1016/S0021-9258(19)38243-2.
  • Kato T, Yamaguchi Y, Uyehara T, et al. Self defensive substances in rice plant against rice blast disease. Tetrahedron Lett. 1983;24(43):4715–4718. doi: 10.1016/S0040-4039(00)86236-X.
  • Wang W, Zhu J, Lyu F, et al. ω-3 Polyunsaturated fatty acids-derived lipid metabolites on angiogenesis, inflammation and cancer. Prostaglandins Other Lipid Mediat. 2014;113–115:13–20. doi: 10.1016/j.prostaglandins.2014.07.002.
  • Zhang G, Panigrahy D, Mahakian LM, et al. Epoxy metabolites of docosahexaenoic acid (DHA) inhibit angiogenesis, tumor growth, and metastasis. Proc Natl Acad Sci USA. 2013;110(16):6530–6535. doi: 10.1073/pnas.1304321110.
  • Inceoglu B, Bettaieb A, Haj FG, et al. Modulation of mitochondrial dysfunction and endoplasmic reticulum stress are key mechanisms for the wide-ranging actions of epoxy fatty acids and soluble epoxide hydrolase inhibitors. Prostaglandins Other Lipid Mediat. 2017;133(Nov):68–78. doi: 10.1016/j.prostaglandins.2017.08.003.
  • Mubiru E. 2018. Epoxy fatty acids in foods: analytics, formation and risk assessment [PhD dissertation]. Ghent, Belgium: Faculty of Bioscience Engineering, University of Ghent.
  • Wilson R, Fernie CE, Scrimgeour CM, et al. Dietary epoxy fatty acids are absorbed in healthy women. Eur J Clin Invest. 2002;32(2):79–83. doi: 10.1046/j.1365-2362.2002.00951.x.
  • Liao C-H. 2013. Comparison of chemical assays used to determine epoxides in oxidized lipids [MS Thesis]. New Brunswick, NJ: Food Science, Rutgers University.
  • Dupard-Julien C, Kandlakunta B, Uppu R. Determination of epoxides by high-performance liquid chromatography following derivatization with diethyldithiocarbamate. Anal Bioanal Chem. 2007;387(3):1027–1032. doi: 10.1007/s00216-006-1003-3.
  • Mubiru E, Shrestha K, Papastergiadis A, et al. Improved gas chromatography-flame ionisation detector analytical method for the analysis of epoxy fatty acids. J Chromatogr A. 2013;1318(v):217–225. doi: 10.1016/j.chroma.2013.10.025.
  • Mubiru E, Shrestha K, Papastergiadis A, et al. Development and validation of a gas chromatography–flame ionization detection method for the determination of epoxy fatty acids in food matrices. J Agric Food Chem. 2014;62(13):2982–2988. doi: 10.1021/jf405664c.
  • Gruneis V, Popovic N, Zehl M, et al. 2018. Non-targeted screening for oxidized lipids in foods. 2018 AOCS National Meeting, Minneapolis, MN.
  • Criscuolo A, Nepachalovich P, Garcia-del Rio DF, et al. Analytical and computational workflow for in-depth analysis of oxidized complex lipids in blood plasma. Nat Commun. 2022;13(1):6547. doi: 10.1038/s41467-022-33225-9.
  • Rand AA, Helmer PO, Inceoglu B, et al. LC-MS/MS analysis of the epoxides and diols derived from the endocannabinoid arachidonoyl ethanolamide, in. Methods Mol Biol. 2018;1730:123–133. doi: 10.1007/978-1-4939-7592-1_10.
  • Newman JW, Watanabe T, Hammock BD. The simultaneous quantification of cytochrome P450 dependent linoleate and arachidonate metabolites in urine by HPLC-MS/MS. J Lipid Res. 2002;43(9):1563–1578. doi: 10.1194/jlr.D200018-JLR200.
  • Strassburg K, Huijbrechts AML, Kortekaas KA, et al. Quantitative profiling of oxylipins through comprehensive LC-MS/MS analysis: application in cardiac surgery. Anal Bioanal Chem. 2012;404(5):1413–1426. doi: 10.1007/s00216-012-6226-x.
  • Liakh I, Pakiet A, Sledzinski T, et al. Methods of the analysis of oxylipins in biological samples. Molecules. 2020;25(2):349–382. doi: 10.3390/molecules25020349.
  • Musher JI. The NMR spectra of some epoxides. Mol Phys. 1961;4(4):311–315. doi: 10.1080/00268976100100451.
  • Aerts HAJ, Jacobs PA. Epoxide yield determination of oils and fatty acid methyl esters using 1H NMR. J Americ Oil Chem Soc. 2004;81(9):841–846. doi: 10.1007/s11746-004-0989-1.
  • Kaur A, Bhardwaj N, Kaur A, et al. Proton nuclear magnetic resonance-based method for the quantification of epoxidized methyl oleate. J Americ Oil Chem Soc. 2021;98(2):139–147. doi: 10.1002/aocs.12439.
  • Hu K, Westler WM, Markley JL. Simultaneous quantification and identification of individual chemicals in metabolite mixtures by two-dimensional extrapolated time-zero 1H−13C HSQC (HSQC0). J Am Chem Soc. 2011;133(6):1662–1665. doi: 10.1021/ja1095304.
  • Radojčić D, Hong J, Ionescu M, et al. Study on the reaction of amines with internal epoxides. Euro J Lipid Sci Tech. 2016;118(10):1507–1511. doi: 10.1002/ejlt.201500490.
  • Jovanovic SV, Jankovic I, Josimovic L. Electron-transfer reactions of alkylperoxy radicals. J Am Chem Soc. 1992;114(23):9018–9021. doi: 10.1021/ja00049a037.
  • Erben-Russ M, Bors W, Saran M. Reactions of linoleic acid peroxyl radicals with phenolic antioxidants: a pulse radiolysis study. Int J Radiat Biol Relat Stud Phys Chem Med. 1987;52(3):393–412. doi: 10.1080/09553008714551871.
  • Weenen H, Porter NA. Autoxidation of model membrane systems: cooxidation of polyunsaturated lecithins with steroids, fatty acids, and α-tocopherol. J Am Chem Soc. 1982;104(19):5216–5221. doi: 10.1021/ja00383a037.
  • Schaich KM. Lipid antioxidants – more than just lipid radical quenchers. In: Bravo-Dias C, editor. Lipid oxidation in food and biological systems: a physical chemistry perspective. Cham, Switzerland: Springer Nature; 2022. p. 151–184.
  • Xia W. 2017. Determination of epoxides and alcohols in edible oils [PhD Dissertation]. Halifax, Nova Scotia: Department of Process Engineering and Applied Science, Dalhousie University.
  • Bonollo S, Lanari D, Vaccaro L. Ring-opening of epoxides in water. Eur J Org Chem. 2011;2011(14):2587–2598. doi: 10.1002/ejoc.201001693.
  • Gardner HW, Nelson EC, Tjarks LW, et al. Acid-catalyzed transformation of 13(S)-hydroperoxylinoleic acid into epoxyhydroxyoctadecenoic and trihydroxyoctadecenoic acids. Chem Phys Lipids. 1984;35(2):87–101. doi: 10.1016/0009-3084(84)90015-X.
  • Yamanashi H, Boeglin WE, Morisseau C, et al. Catalytic activities of mammalian epoxide hydrolases with cis and trans fatty acid epoxides relevant to skin barrier function. J Lipid Res. 2018;59(4):684–695. doi: 10.1194/jlr.M082701.
  • Abbot GG, Gunstone FD. Fatty acids, part 31. The formation of some substituted vic-epoxyoctadecanoates and their conversion to 1,4-epoxides and other compounds. Chem Phys Lipids. 1971;7(4):290–302. doi: 10.1016/0009-3084(71)90007-7.
  • Walens HA, Koob RP, Ault WC, et al. Rearrangement of epoxy fatty esters to keto fatty esters. J Americ Oil Chem Soc. 1965;42(2):126–129. doi: 10.1007/BF02545047.
  • Gardner HW, Selke E. Volatiles from thermal decomposition of isomeric methyl (12S,13S)-(E)-12,13-epoxy-9-hydroperoxy-10-octadecenoates. Lipids. 1984;19(6):375–380. doi: 10.1007/BF02537398.
  • Moser BR, Cermak SC, Doll KM, et al. A review of fatty epoxide ring opening reactions: chemistry, recent advances, and applications. J Americ Oil Chem Soc. 2022;99(10):801–842. doi: 10.1002/aocs.12623.
  • Van den Eeckhout E, De Moerloose P, Sinsheimer JE. High-performance thin-layer chromatography assay for epoxide hydrolase activity and the determination of phenoxypropane-1,2-diols. J Chromatogr. 1985;318(2):343–349. doi: 10.1016/s0021-9673(01)90695-8.
  • Markwalder HU, Scheffeldt P, Neukom H. Oxidation of linoleic acid by lipoxygenase in flour water systems: Isolation of 9,12,13-trihydroxy-trans-10-octadecenoic acid as a main reaction product, Lebensm.-Wiss. U Technol. 1975;8:234–235.
  • Tsuchida M, Miura T, Miyaki K. Identification of trihydroxyoctadecenoates derived from UV-irradiated or autoxidized sesame oil and methyl linoleate and mechanism of their formation. J Jpn Oil Chem Soc. 1972;21(5):269–274. doi: 10.5650/jos1956.21.269.
  • Hamberg M, Hamberg G. Peroxygenase-catalyzed fatty acid epoxidation in cereal seeds (sequential oxidation of linoleic acid into 9(S),12(S),13(S)-trihydroxy-10(E)-octadecenoic acid. Plant Physiol. 1996;110(3):807–815. doi: 10.1104/pp.110.3.807.
  • Thomas CP, Boeglin WE, Garcia-Diaz Y, et al. Steric analysis of epoxyalcohol and trihydroxy derivatives of 9-hydroperoxy-linoleic acid from hematin and enzymatic synthesis. Chem Phys Lipids. 2013;167–168:21–32. doi: 10.1016/j.chemphyslip.2013.01.002.
  • Gu X, Salomon RG. Fragmentation of a linoleate-derived γ-hydroperoxy-α,β-unsaturated epoxide to γ-hydroxy- and γ-oxo-alkenals involves a unique pseudo-symmetrical diepoxycarbinyl radical. Free Radic Biol Med. 2012;52(3):601–606. doi: 10.1016/j.freeradbiomed.2011.11.013.
  • Grüneis V, Pignitter M. Epoxide value—a novel marker for the quality assessment of food lipids. J Agric Food Chem. 2018;66(20):5039–5040. doi: 10.1021/acs.jafc.8b02037.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.