104
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Pharmacological inhibition of SIRT-2 by AK-7 modulates redox status and apoptosis via regulating Nrf2 in an experimental model of chronic obstructive pulmonary disease: an invivo and insilico study

, , , &
Pages 500-519 | Received 12 Jun 2023, Accepted 09 Oct 2023, Published online: 04 Dec 2023

References

  • Brightling C, Greening N. Airway inflammation in COPD: progress to precision medicine. Eur Respir J. 2019;54(2):1900651. doi: 10.1183/13993003.00651-2019.
  • Thomashow BM, Mannino DM, Tal-Singer R, et al. A rapidly changing understanding of COPD: world COPD day from the COPD foundation. Am J Physiol Lung Cell Mol Physiol. 2021;321(5):L983–L987. doi: 10.1152/ajplung.00400.2021.
  • Rodrigues S, Cunha C, Soares G, et al. Mechanisms, pathophysiology and currently proposed treatments of chronic obstructive pulmonary disease. Pharmaceuticals. 2021;14(10):979. doi: 10.3390/ph14100979.
  • De Rose V, Molloy K, Gohy S, et al. Airway epithelium dysfunction in cystic fibrosis and COPD. Mediators Inflamm. 2018;2018:1309746. Oct doi: 10.1155/2018/1309746.
  • López‐Campos JL, Tan W, Soriano JB. Global burden of COPD. Respirology. 2016;21(1):14–23. doi: 10.1111/resp.12660.
  • Kim SM, Hwang KA, Choi DW, et al. The cigarette smoke components induced the cell proliferation and epithelial to mesenchymal transition via production of reactive oxygen species in endometrial adenocarcinoma cells. Food Chem Toxicol. 2018;121:657–665. doi: 10.1016/j.fct.2018.09.023.
  • Hadzic S, Wu CY, Avdeev S, et al. Lung epithelium damage in COPD–an unstoppable pathological event? Cell Signal. 2020;68:109540. doi: 10.1016/j.cellsig.2020.109540.
  • Magallón M, Navarro-García MM, Dasí F. Oxidative stress in COPD. J Clin Med. 2019;8(11):1953. doi: 10.1016/j.cellsig.2020.109540.
  • Wang J, Lu Q, Cai J, et al. Nestin regulates cellular redox homeostasis in lung cancer through the Keap1–Nrf2 feedback loop. Nat Commun. 2019;10(1):5043. doi: 10.1038/s41467-019-12925-9.
  • Lee J, Jang J, Park SM, et al. An update on the role of Nrf2 in respiratory disease: molecular mechanisms and therapeutic approaches. Int J Mol Sci. 2021;22(16):8406. doi: 10.3390/ijms22168406.
  • Sakao S, Tatsumi K. The importance of epigenetics in the development of chronic obstructive pulmonary disease. Respirology. 2011; 16(7):1056–1063. doi: 10.1111/j.1440-1843.2011.02032.x.
  • Shanmugam MK, Sethi G. Role of epigenetics in inflammation-associated diseases. Epigenetics: development and Disease. 2012;61:627–657. doi: 10.1007/978-94-007-4525-4_27.
  • Zhang L, Lu Q, Chang C. Epigenetics in health and disease. Adv Exp Med Biol. 2020;1253:3–55. 55. doi: 10.1007/978-981-15-3449-2_1.
  • Wang M, Lin H. Understanding the function of mammalian sirtuins and protein lysine acylation. Annu Rev Biochem. 2021;90(1):245–285. doi: 10.1146/annurev-biochem-082520-125411.
  • Kaladhar DS, Kant S. In silico protein–protein interaction studies of Sirtuins as anti-inflammatory and anti-cancer agents. metabolism. 2017; Aug4:162–185.
  • Kosciuk T, Wang M, Hong JY, et al. Updates on the epigenetic roles of sirtuins. Curr Opin Chem Biol. 2019;51:18–29. doi: 10.1016/j.cbpa.2019.01.023.
  • Matucci A, Bormioli S, Nencini F, et al. Asthma and chronic rhinosinusitis: how similar are they in pathogenesis and treatment responses? Int J Mol Sci. 2021;22(7):3340. doi: 10.3390/ijms22073340.
  • Afzaal A, Rehman K, Kamal S, et al. Versatile role of sirtuins in metabolic disorders: from modulation of mitochondrial function to therapeutic interventions. J Biochem Mol Toxicol. 2022;36(7):e23047. doi: 10.1002/jbt.23047.
  • Liu Y, Zhang Y, Zhu K, et al. Emerging role of sirtuin 2 in parkinson’s disease. Front Aging Neurosci. 2019;11:372. doi: 10.3389/fnagi.2019.00372.
  • Lee YG, Reader BF, Herman D, et al. Sirtuin 2 enhances allergic asthmatic inflammation. JCI Insight. 2019;4(4):e124710. doi: 10.1172/jci.insight.e124710.
  • Zhang L, Kim S, Ren X. The clinical significance of SIRT2 in malignancies: a tumor suppressor or an oncogene? Front Oncol. 2020;10:1721. doi: 10.3389/fonc.2020.01721.
  • Zhu C, Dong X, Wang X, et al. Multiple roles of SIRT2 in regulating physiological and pathological signal transduction. Genet Res (Camb). 2022;2022:9282484–9282414. doi: 10.1155/2022/9282484.
  • Ferreira LL, Andricopulo AD. ADMET modeling approaches in drug discovery. Drug Discov Today. 2019;24(5):1157–1165. doi: 10.1016/j.drudis.2019.03.015.
  • Naqvi AA, Mohammad T, Hasan GM, et al. Advancements in docking and molecular dynamics simulations towards ligand-receptor interactions and structure-function relationships. Curr Top Med Chem. 2018;18(20):1755–1768. doi: 10.2174/1568026618666181025114157.
  • Guan L, Yang H, Cai Y, et al. ADMET-score–a comprehensive scoring function for evaluation of chemical drug-likeness. Medchemcomm. 2019;10(1):148–157. doi: 10.1039/C8MD00472B.
  • Agrawal S, Pathak E, Mishra R, et al. Computational exploration of the dual role of the phytochemical fortunellin: antiviral activities against SARS-CoV-2 and immunomodulatory abilities against the host. Comput Biol Med. 2022;149:106049. doi: 10.1016/j.compbiomed.2022.106049.
  • Khaerunnisa S, Kurniawan H, Awaluddin R, et al. Potential inhibitor of COVID-19 main protease (Mpro) from several medicinal plant compounds by molecular docking study. Preprints. 2020;2020:2020030226. doi: 10.20944/preprints202003.0226.v1.
  • Beckett EL, Stevens RL, Jarnicki AG, et al. A new short-term mouse model of chronic obstructive pulmonary disease identifies a role for mast cell tryptase in pathogenesis. J Allergy Clin Immunol. 2013;131(3):752–762. doi: 10.1016/j.jaci.2012.11.053.
  • Ghorani V, Boskabady MH, Khazdair MR, et al. Experimental animal models for COPD: a methodological review. Tob Induc Dis. 2017;15(1):25. doi: 10.1186/s12971-017-0130-2.
  • Wang X, Wang M, Yang L, et al. Inhibition of sirtuin 2 exerts neuroprotection in aging rats with increased neonatal iron intake. Neural Regen Res. 2014;9(21):1917–1922. doi: 10.4103/1673-5374.145361.
  • Erel O. A new automated colorimetric method for measuring total oxidant status. Clin Biochem. 2005;8(12):1103–1111. doi: 10.1016/j.clinbiochem.2005.08.008.
  • Erel O. A novel automated method to measure total antioxidant response against potent free radical reactions. Clin Biochem. 2004;37(2):112–119. doi: 10.1016/j.clinbiochem.2003.10.014.
  • Chauhan, Preeti S, Jaiswal, Anju, Singh, Rashmi, Subhashini,. Combination therapy with curcumin alone plus piperine ameliorates ovalbumin-induced chronic asthma in mice. Inflammation., 2018;41( 5):1922–1933. doi: 10.1007/s10753-018-0836-1.
  • Kumari A, Tyagi N, Dash D, et al. Intranasal curcumin ameliorates lipopolysaccharide-induced acute lung injury in mice. Inflammation. 2015;38(3):1103–1112. Jun doi: 10.1007/s10753-014-0076-y.
  • Lowry OH, Rosebrough NJ, Farr AL, et al. Protein measurement with the folin phenol reagent. J Biol Chem. 1951;193(1):265–275. doi: 10.1016/S0021-9258(19)52451-6.
  • Levine RL, Garland D, Oliver CN, et al. Determination of carbonyl content in oxidatively modified proteins. In: Packer L, Glazer AN, editors. Vol. 186. Methods in enzymology. Cambridge: Academic Press, Elsevier; 1990. p. 464–478. doi: 10.1016/0076-6879(90)86141-H.
  • Miranda KM, Espey MG, Yamada K, et al. Unique oxidative mechanisms for the reactive nitrogen oxide species, nitroxyl anion. J Biol Chem. 2001;276(3):1720–1727. doi: 10.1074/jbc.M006174200.
  • Das K, Samanta L, Chainy GB. A modified spectrophotometric assay of superoxide dismutase using nitrite formation by superoxide radicals.2000 http://nopr.niscpr.res.in/handle/123456789/15379.
  • Aebi H. Catalase. In: Bergmeyer HU, editor. Methods of enzymatic analysis. Weinheim/NewYork, NY: Verlag Chemie/ Academic press Inc, Elsevier;1974. p. 673–684. doi: 10.1016/B978-0-12-091302-2.50032-3.
  • Goyal A, Srivastava A, Sihota R, et al. Evaluation of oxidative stress markers in aqueous humor of primary open angle glaucoma and primary angle closure glaucoma patients. Curr Eye Res. 2014;39(8):823–829. doi: 10.3109/02713683.2011.556299.
  • Carlberg I, Mannervik B. Glutathione reductase. In Methods in enzymology. Cambridge: Academic press, Elsevier;1985 (Vol. 113, pp. 484–490. doi: 10.1016/S0076-6879(85)13062-4.
  • Habig WH, Pabst MJ, Jakoby WB. Glutathione S-transferase AA from rat liver. Arch Biochem Biophys. 1976; Aug 1175(2):710–716. doi: 10.1016/0003-9861(76)90563-4.
  • Macdonald IO, Olusola OJ, Osaigbovo UA. Effects of chronic ethanol administration on body weight, reduced glutathione (GSH), malondialdehyde (MDA) levels and glutathione-s-transferase activity (GST) in rats. N.Y. Sci J. 2010;3(4):3947.
  • Kumar G, Sharmila Banu G, Murugesan AG, et al. Effect of helicteresisora. Bark extracts on brain antioxidant status and lipid peroxidation in streptozotocin diabetic rats. Pharm Biol. 2007;45(10):753–759. doi: 10.1080/13880200701585782.
  • Salsabili S, Lithopoulos M, Sreeraman S, et al. Fully automated estimation of the mean linear intercept in histopathology images of mouse lung tissue. J Med Imaging. 2021;8(2):027501. doi: 10.1117/1.JMI.8.2.027501.
  • Gibson-Corley KN, Olivier AK, Meyerholz DK. Principles for valid histopathologic scoring in research. Vet Pathol. 2013;50(6):1007–1015. doi: 10.1177/0300985813485099.
  • Liang Y, Mak JC. Inhaled therapies for asthma and chronic obstructive pulmonary disease. Curr Pharm Des. 2021; Apr 127(12):1469–1481. doi: 10.2174/1389201021666201126144057.
  • Bereda G. Chronic obstructive pulmonary disease: definition, risk factors, pathophysiology and management. J Biomed Biol Sci. 2022;2(1):1–2.
  • Barnes PJ. Oxidative stress-based therapeutics in COPD. Redox Biol. 2020;33:101544. doi: 10.1016/j.redox.2020.101544.
  • Singh CK, Chhabra G, Ndiaye MA, et al. The role of sirtuins in antioxidant and redox signaling. Antioxid Redox Signal. 2018;28(8):643–661. doi: 10.1089/ars.2017.7290.
  • Lagorce D, Douguet D, Miteva MA, et al. Computational analysis of calculated physicochemical and ADMET properties of protein-protein interaction inhibitors. Sci Rep. 2017;7(1):46277. doi: 10.1038/srep46277.
  • Sahiner UM, Birben E, Erzurum S, et al. Oxidative stress in asthma. World Allergy Organ J. 2011;4(10):151–158. doi: 10.1097/WOX.0b013e318232389e.
  • Erzurum SC. New insights in oxidant biology in asthma. Ann Am Thorac Soc. 2016;13(Suppl 1):S35–S9. doi: 10.1513/AnnalsATS.201506-385MG.
  • Janssen‐Heininger YM, Nolin JD, Hoffman SM, et al. Emerging mechanisms of glutathione‐dependent chemistry in biology and disease. J Cell Biochem. 2013;114(9):1962–1968. doi: 10.1002/jcb.24551.
  • Ghosh N, Das A, Chaffee S, et al. Reactive oxygen species, oxidative damage and cell death. In: Chatterjee S, Jungraithmayr W, Bagchi D, editors. Immunity and inflammation in health and disease. Cambridge: Academic Press, Elsevier; 2018. p. 45–55. doi: 10.1016/B978-0-12-805417-8.00004-4.
  • Song Q, Zhou ZJ, Cai S, et al. Oxidative stress links the tumour suppressor p53 with cell apoptosis induced by cigarette smoke. Int J Environ Health Res. 2022;32(8):1745–1755. doi: 10.1080/09603123.2021.1910211.
  • Houtkooper RH, Pirinen E, Auwerx J. Sirtuins as regulators of metabolism and healthspan. Nat Rev Mol Cell Biol. 2012;13(4):225–238. doi: 10.1038/nrm3293.
  • Shim KS, Song HK, Hwang YH, et al. Ethanol extract of Veronica persica ameliorates house dust mite-induced asthmatic inflammation by inhibiting STAT-3 and STAT-6 activation. Biomed Pharmacother. 2022;152:113264. doi: 10.1016/j.biopha.2022.113264.
  • Obling N, Backer V, Hurst JR, et al. Nasal and systemic inflammation in chronic obstructive pulmonary disease (COPD). Respir Med. 2022;195:106774. doi: 10.1016/j.rmed.2022.106774.
  • Fukutomi T, Takagi K, Mizushima T, et al. Kinetic, thermodynamic, and structural characterizations of the association between Nrf2-DLGex degron and Keap1. Mol Cell Biol. 2014;34(5):832–846.* doi: 10.1128/MCB.01191-13.
  • Alam J, Cook JL. How many transcription factors does it take to turn on the heme oxygenase-1 gene? Am J Respir Cell Mol Biol. 2007; 36(2):166–174. doi: 10.1165/rcmb.2006-0340TR.
  • Yang X, Park SH, Chang HC, et al. Sirtuin 2 regulates cellular iron homeostasis via deacetylation of transcription factor NRF2. J Clin Invest. 2017;127(4):1505–1516. doi: 10.1172/JCI88574.
  • Yang X, Chang HC, Tatekoshi Y, et al. SIRT2 inhibition protects against cardiac hypertrophy and heart failure. bioRxiv. 2023. doi: 10.1101/2023.01.25.525524.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.