44
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Calorie restriction anti-hypertrophic effects are associated with improved mitochondrial content, blockage of Ca2+-induced mitochondrial damage, and lower reverse electron transport-mediated oxidative stress

, , & ORCID Icon
Pages 293-310 | Received 08 Nov 2023, Accepted 15 Mar 2024, Published online: 17 Apr 2024

References

  • David CEB, Lucas AMB, Araújo MTS, et al. Calorie restriction attenuates hypertrophy-induced redox imbalance and mitochondrial ATP-sensitive K + channel repression. J Nutr Biochem. 2018;62:87–94. doi:10.1016/j.jnutbio.2018.08.008.
  • Hirotani S, Otsu K, Nishida K, et al. Involvement of nuclear factor-κB and apoptosis signal-regulating kinase 1 in G-protein–coupled receptor agonist–induced cardiomyocyte hypertrophy. Circulation. 2002;105(4):509–515. doi:10.1161/hc0402.102863.
  • Kindo M, Gerelli S, Bouitbir J, et al. Pressure overload-induced mild cardiac hypertrophy reduces left ventricular transmural differences in mitochondrial respiratory chain activity and increases oxidative stress. Front Physiol. 2012;3:332. doi:10.3389/fphys.2012.00332.
  • Matsushima S, Kuroda J, Ago T, et al. Increased oxidative stress in the nucleus caused by Nox4 mediates oxidation of HDAC4 and cardiac hypertrophy. Circ Res. 2013;112(4):651–663. doi:10.1161/CIRCRESAHA.112.279760.
  • Nakamura K, Fushimi K, Kouchi H, et al. Inhibitory effects of antioxidants on neonatal rat cardiac myocyte hypertrophy induced by tumor necrosis factor-alpha and angiotensin II. Circulation. 1998;98(8):794–799. doi:10.1161/01.cir.98.8.794.
  • Yancey DM, Guichard JL, Ahmed MI, et al. Cardiomyocyte mitochondrial oxidative stress and cytoskeletal breakdown in the heart with a primary volume overload. Am J Physiol Heart Circ Physiol. 2015;308(6):H651–H663. doi:10.1152/ajpheart.00638.2014.
  • Dai D-F, Chen T, Szeto H, et al. Mitochondrial targeted antioxidant peptide ameliorates hypertensive cardiomyopathy. J Am Coll Cardiol. 2011;58(1):73–82. doi:10.1016/j.jacc.2010.12.044.
  • Dai DF, Santana LF, Vermulst M, et al. Overexpression of catalase targeted to mitochondria attenuates murine cardiac aging. Circulation. 2009;119(21):2789–2797. doi:10.1161/CIRCULATIONAHA.108.822403.
  • Li B, Sun Y, Wang JP, et al. Antioxidant N-acetylcysteine inhibits maladaptive myocyte autophagy in pressure overload induced cardiac remodeling in rats. Eur J Pharmacol. 2018;839:47–56. doi:10.1016/j.ejphar.2018.08.034.
  • Kobara M, Furumori-Yukiya A, Kitamura M, et al. Short-term caloric restriction suppresses cardiac oxidative stress and hypertrophy caused by chronic pressure overload. J Card Fail. 2015;21(8):656–666. doi:10.1016/j.cardfail.2015.04.016.
  • Takatsu M, Nakashima C, Takahashi K, et al. Calorie restriction attenuates cardiac remodeling and diastolic dysfunction in a rat model of metabolic syndrome. Hypertension. 2013;62(5):957–965. doi:10.1161/HYPERTENSIONAHA.113.02093.
  • Weiss EP, Fontana L. Caloric restriction: powerful protection for the aging heart and vasculature. Am J Physiol - Hear Circ Physiol. 2011;301:H1205–H1219.
  • An HS, Lee JY, Choi EB, et al. Caloric restriction reverses left ventricular hypertrophy through the regulation of cardiac iron homeostasis in impaired leptin signaling mice. Sci Rep. 2020;10(1):7176. doi:10.1038/s41598-020-64201-2.
  • Colom B, Oliver J, Roca P, et al. Caloric restriction and gender modulate cardiac muscle mitochondrial H2O2 production and oxidative damage. Cardiovasc Res. 2007;74(3):456–465. doi:10.1016/j.cardiores.2007.02.001.
  • Faulks SC, Turner N, Else PL, et al. Calorie restriction in mice: effects on body composition, daily activity, metabolic rate, mitochondrial reactive oxygen species production, and membrane fatty acid composition. J Gerontol A Biol Sci Med Sci. 2006;61(8):781–794. doi:10.1093/gerona/61.8.781.
  • Gredilla R, Sanz A, Lopez-Torres M, et al. Caloric restriction decreases mitochondrial free radical generation at complex I and lowers oxidative damage to mitochondrial DNA in the rat heart. FASEB J. 2001;15(9):1589–1591. doi:10.1096/fj.00-0764fje.
  • Judge S, Judge A, Grune T, et al. Short-term CR decreases cardiac mitochondrial oxidant production but increases carbonyl content. Am J Physiol Regul Integr Comp Physiol. 2004;286(2):R254–R259. doi:10.1152/ajpregu.00502.2003.
  • Niemann B, Li L, Simm A, et al. Caloric restriction reduces sympathetic activity similar to beta-blockers but conveys additional mitochondrio-protective effects in aged myocardium. Sci Rep. 2021;11(1):1931. doi:10.1038/s41598-021-81438-7.
  • Pfeifer MA, Weinberg CR, Cook D, et al. Differential changes of autonomic nervous system function with age in man. Am J Med. 1983;75(2):249–258. doi:10.1016/0002-9343(83)91201-9.
  • Small KM, Wagoner LE, Levin AM, et al. Synergistic polymorphisms of β 1 - and α 2C -adrenergic receptors and the risk of congestive heart failure. N Engl J Med. 2002;347(15):1135–1142. doi:10.1056/nejmoa020803.
  • Facundo HTF, Brainard RE, Caldas FRL, et al.. Mitochondria and cardiac hypertrophy. New York: Springer LLC; 2017.
  • Vercesi AE, Castilho RF, Kowaltowski AJ, et al. Mitochondrial calcium transport and the redox nature of the calcium-induced membrane permeability transition. Free Radic Biol Med. 2018;129:1–24. doi:10.1016/j.freeradbiomed.2018.08.034.
  • Izem-Meziane M, Djerdjouri B, Rimbaud S, et al. Catecholamine-induced cardiac mitochondrial dysfunction and mPTP opening: protective effect of curcumin. Am J Physiol Heart Circ Physiol. 2012;302(3):H665–H674. doi:10.1152/ajpheart.00467.2011.
  • Brainard RE, Facundo HT. Cardiac hypertrophy drives PGC-1α suppression associated with enhanced O-glycosylation. Biochim Biophys Acta Mol Basis Dis. 2021;1867(5):166080. doi:10.1016/j.bbadis.2021.166080.
  • Facundo HT, Brainard RE, Watson LJ, et al. O-GlcNAc signaling is essential for NFAT-mediated transcriptional reprogramming during cardiomyocyte hypertrophy. Am J Physiol Heart Circ Physiol. 2012;302(10):H2122–H2130. doi:10.1152/ajpheart.00775.2011.
  • Finckenberg P, Eriksson O, Baumann M, et al. Caloric restriction ameliorates angiotensin II-induced mitochondrial remodeling and cardiac hypertrophy. Hypertension. 2012;59(1):76–84. doi:10.1161/HYPERTENSIONAHA.111.179457.
  • Lucas AM, Caldas FR, da Silva AP, et al. Diazoxide prevents reactive oxygen species and mitochondrial damage, leading to anti-hypertrophic effects. Chem Biol Interact. 2017;261:50–55. doi:10.1016/j.cbi.2016.11.012.
  • Su M, Zhu L, Zhang Y, et al. Structural basis of the activation of heterotrimeric Gs-protein by isoproterenol-bound β1-adrenergic receptor. Mol Cell. 2020;80(1):59–71.e4. doi:10.1016/j.molcel.2020.08.001.
  • Oudit GY, Crackower MA, Eriksson U, et al. Phosphoinositide 3-kinase γ-deficient mice are protected from isoproterenol-induced heart failure. Circulation. 2003;108(17):2147–2152. doi:10.1161/01.CIR.0000091403.62293.2B.
  • Power AS, Hickey AJ, Crossman DJ, et al. Calcium mishandling impairs contraction in right ventricular hypertrophy prior to overt heart failure. Pflugers Arch. 2018;470(7):1115–1126. doi:10.1007/s00424-018-2125-0.
  • Schumacher C, Becker H, Conrads R, et al. Hypertrophic cardiomyopathy: a desensitized cardiac\-adrenergic system in the presence of normal plasma catecholamine concentrations. Naunyn Schmiedebergs Arch Pharmacol. 1995;351:398–407. doi:10.1007/BF00169081.
  • Seyfarth T, Gerbershagen HP, Giessler C, et al. The cardiac β-adrenoceptor-G-protein(s)-adenylyl cyclase system in monocrotaline-treated rats. J Mol Cell Cardiol. 2000;32(12):2315–2326. doi:10.1006/jmcc.2000.1262.
  • De Lucia C, Gambino G, Petraglia L, et al. Long-term caloric restriction improves cardiac function, remodeling, adrenergic responsiveness, and sympathetic innervation in a model of postischemic heart failure. Circ Heart Fail. 2018;11(3):e004153. doi:10.1161/CIRCHEARTFAILURE.117.004153.
  • Eschenhagen T. β-adrenergic signaling in heart failure - Adapt or die. Nat Med. 2008;14(5):485–487. doi:10.1038/nm0508-485.
  • Maccari S, Pace V, Barbagallo F, et al. Intermittent β-adrenergic blockade downregulates the gene expression of β-myosin heavy chain in the mouse heart. Eur J Pharmacol. 2020;882:173287. doi:10.1016/j.ejphar.2020.173287.
  • Benovic JL, Strasser RH, Caron MG, et al. β-adrenergic receptor kinase: identification of a novel protein kinase that phosphorylates the agonist-occupied form of the receptor. Proc Natl Acad Sci U S A. 1986;83(9):2797–2801. doi:10.1073/pnas.83.9.2797.
  • de Lucia C, Eguchi A, Koch WJ. New insights in cardiac β-adrenergic signaling during heart failure and aging. Front Pharmacol. 2018;9:904. doi:10.3389/fphar.2018.00904.
  • Facundo HdTF, Brainard RE, Caldas FRdL, et al. Mitochondria and cardiac hypertrophy. Adv Exp Med Biol. 2017;982:203–226.
  • Date M, Morita T, Yamashita N, et al. The antioxidant N-2-mercaptopropionyl glycine attenuates left ventricular hypertrophy in in vivo murine pressure-overload model. J Am Coll Cardiol. 2002;39(5):907–912. doi:10.1016/s0735-1097(01)01826-5.
  • Dhalla AK, Hill MF, Singal PK. Role of oxidative stress in transition of hypertrophy to heart failure. J Am Coll Cardiol. 1996;28(2):506–514. doi:10.1016/0735-1097(96)00140-4.
  • Dhalla AK, Singal PK. Antioxidant changes in hypertrophied and failing Guinea pig hearts. Am J Physiol. 1994;266(4 Pt 2):H1280–H1285. doi:10.1152/ajpheart.1994.266.4.H1280.
  • Xie Z, Kometiani P, Liu J, et al. Intracellular reactive oxygen species mediate the linkage of Na+/K+-ATPase to hypertrophy and its marker genes in cardiac myocytes. J Biol Chem. 1999;274(27):19323–19328. doi:10.1074/jbc.274.27.19323.
  • Chouchani ET, Pell VR, Gaude E, et al. Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS. Nature. 2014;515(7527):431–435. doi:10.1038/nature13909.
  • Serna JDC, Caldeira da Silva CC, Kowaltowski AJ. Functional changes induced by caloric restriction in cardiac and skeletal muscle mitochondria. J Bioenerg Biomembr. 2020;52(4):269–277. doi:10.1007/s10863-020-09838-4.
  • Shih NL, Cheng TH, Loh SH, et al. Reactive oxygen species modulate angiotensin II-induced beta-myosin heavy chain gene expression via Ras/Raf/extracellular signal-regulated kinase pathway in neonatal rat cardiomyocytes. Biochem Biophys Res Commun. 2001;283(1):143–148. doi:10.1006/bbrc.2001.4744.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.