87
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Mechanism of non-thermal atmospheric plasma in anti-tumor: influencing intracellular RONS and regulating signaling pathways

, , , , &
Pages 333-353 | Received 05 Feb 2024, Accepted 13 May 2024, Published online: 24 May 2024

References

  • Liu Q, Wu B, Yu Q, et al. Immobilization of quaternary ammonium based antibacterial monomer onto dentin substrate by non-thermal atmospheric plasma. Dent Mater J. 2019;38(5):821–829. doi:10.4012/dmj.2018-267.
  • Ma XR, Zhu XM, Li J, et al. Characterization of cold atmospheric plasma-modified dentin collagen. Dent Mater J. 2022;41(3):473–480.
  • Mohd NN, Lee BK, Yap SS, et al. Cold plasma inactivation of chronic wound bacteria. Arch Biochem Biophys. 2016;605:76–85.
  • Stratmann B, Costea TC, Nolte C, et al. Effect of cold atmospheric plasma therapy vs standard therapy placebo on wound healing in patients with diabetic foot ulcers: a randomized clinical trial. JAMA Netw Open. 2020;3(7):e2010411. doi:10.1001/jamanetworkopen.2020.10411.
  • Almeida-Ferreira C, Silva-Teixeira R, Gonçalves AC, et al. Cold atmospheric plasma apoptotic and oxidative effects on mcf7 and hcc1806 human breast cancer cells. Int J Mol Sci. 2022;23(3):1698.
  • Mokhtari H, Farahmand L, Yaserian K, et al. The antiproliferative effects of cold atmospheric plasma-activated media on different cancer cell lines, the implication of ozone as a possible underlying mechanism. J Cell Physiol. 2019;234(5):6778–6782. doi:10.1002/jcp.27428.
  • Jo A, Bae JH, Yoon YJ, et al. Plasma-activated medium induces ferroptosis by depleting fsp1 in human lung cancer cells. Cell Death Dis. 2022;13(3):212. doi:10.1038/s41419-022-04660-9.
  • Toyokuni S, Zheng H, Kong Y, et al. Low-temperature plasma as magic wand to differentiate between the good and the evil. Free Radic Res. 2023;57(1):38–46.
  • Pasqual-Melo G, Nascimento T, Sanches LJ, et al. Plasma treatment limits cutaneous squamous cell carcinoma development in vitro and in vivo. Cancers (Basel). 2020;12(7):1993. doi:10.3390/cancers12071993.
  • Ishikawa K, Takeda K, Yoshimura S, et al. Generation and measurement of low-temperature plasma for cancer therapy: a historical review. Free Radic Res. 2023;57(3):239–270.
  • Adachi T, Tanaka H, Nonomura S, et al. Plasma-activated medium induces a549 cell injury via a spiral apoptotic Cascade involving the mitochondrial-nuclear network. Free Radic Biol Med. 2015;79:28–44.
  • Kaushik NK, Ghimire B, Li Y, et al. Biological and medical applications of plasma-activated media, water and solutions. Biol Chem. 2019;400(1):39–62. doi:10.1515/hsz-2018-0226.
  • Kumar DS, Dabholkar N, Narayan PU, et al. Emerging innovations in cold plasma therapy against cancer: a paradigm shift. Drug Discov Today. 2022;27(9):2425–2439.
  • Jezeh MA, Tayebi T, Khani MR, et al. Direct cold atmospheric plasma and plasma-activated medium effects on breast and cervix cancer cells. Plasma Process Polym. 2020;17(11):1900241.
  • Haralambiev L, Nitsch A, Jacoby JM, et al. Cold atmospheric plasma treatment of chondrosarcoma cells affects proliferation and cell membrane permeability. Int J Mol Sci. 2020;21(7):2291.
  • Tanaka H, Bekeschus S, Yan D, et al. Plasma-treated solutions (pts) in cancer therapy. Cancers (Basel). 2021;13(7):1737. doi:10.3390/cancers13071737.
  • Tanaka H, Mizuno M, Ishikawa K, et al. Molecular mechanisms of non-thermal plasma-induced effects in cancer cells. Biol Chem. 2018;400(1):87–91. doi:10.1515/hsz-2018-0199.
  • Van Boxem W, Van der Paal J, Gorbanev Y, et al. Anti-cancer capacity of plasma-treated pbs: effect of chemical composition on cancer cell cytotoxicity. Sci Rep. 2017;7(1):16478. doi:10.1038/s41598-017-16758-8.
  • Miron C, Ishikawa K, Kashiwagura S, et al. Cancer-specific cytotoxicity of ringer’s acetate solution irradiated by cold atmospheric pressure plasma. Free Radic Res. 2023;57(2):91–104.
  • Ishaq M, Evans MM, Ostrikov KK. Effect of atmospheric gas plasmas on cancer cell signaling. Int J Cancer. 2014;134(7):1517–1528. doi:10.1002/ijc.28323.
  • Faramarzi F, Zafari P, Alimohammadi M, et al. Cold physical plasma in cancer therapy: mechanisms, signaling, and immunity. Oxid Med Cell Longev. 2021;2021:9916796. doi:10.1155/2021/9916796.
  • Nakamura K, Peng Y, Utsumi F, et al. Novel intraperitoneal treatment with non-thermal plasma-activated medium inhibits metastatic potential of ovarian cancer cells. Sci Rep. 2017;7(1):6085. doi:10.1038/s41598-017-05620-6.
  • Li W, Yu KN, Bao L, et al. Non-thermal plasma inhibits human cervical cancer hela cells invasiveness by suppressing the mapk pathway and decreasing matrix metalloproteinase-9 expression. Sci Rep. 2016;6:19720. doi:10.1038/srep19720.
  • Guo B, Pomicter AD, Li F, et al. Trident cold atmospheric plasma blocks three cancer survival pathways to overcome therapy resistance. Proc Natl Acad Sci U S A. 2021;118(51):e2107220118.
  • Kim HY, Agrahari G, Lee MJ, et al. Low-temperature argon plasma regulates skin moisturizing and melanogenesis-regulating markers through yes-associated protein. Int J Mol Sci. 2021;22(4):1895. doi:10.3390/ijms22041895.
  • Chen G, Chen Z, Wang Z, et al. Portable air-fed cold atmospheric plasma device for postsurgical cancer treatment. Sci Adv. 2021;7(36):eabg5686. doi:10.1126/sciadv.abg5686.
  • Van Blitterswijk WJ, De Veer G, Krol JH, et al. Comparative lipid analysis of purified plasma membranes and shed extracellular membrane vesicles from normal murine thymocytes and leukemic grsl cells. Biochim Biophys Acta. 1982;688(2):495–504. doi:10.1016/0005-2736(82)90361-3.
  • Van der Paal J, Verheyen C, Neyts EC, et al. Hampering effect of cholesterol on the permeation of reactive oxygen species through phospholipids bilayer: possible explanation for plasma cancer selectivity. Sci Rep. 2017;7:39526. doi:10.1038/srep39526.
  • Matsuzaki T, Kano A, Kamiya T, et al. Enhanced ability of plasma-activated lactated ringer’s solution to induce a549 cell injury. Arch Biochem Biophys. 2018;656:19–30. doi:10.1016/j.abb.2018.08.011.
  • Wang R, Wang X, Zhao J, et al. Clinical value and molecular mechanism of AQGPS in different tumors. Med Oncol. 2022;39(11):174. doi:10.1007/s12032-022-01766-0.
  • Watanabe S, Moniaga CS, Nielsen S, et al. Aquaporin-9 facilitates membrane transport of hydrogen peroxide in mammalian cells. Biochem Biophys Res Commun. 2016;471(1):191–197. doi:10.1016/j.bbrc.2016.01.153.
  • Bienert GP, Chaumont F. Aquaporin-facilitated transmembrane diffusion of hydrogen peroxide. Biochim Biophys Acta. 2014;1840(5):1596–1604. doi:10.1016/j.bbagen.2013.09.017.
  • Bauer G, Graves DB. Mechanisms of selective antitumor action of cold atmospheric plasma-derived reactive oxygen and nitrogen species. Plasma Process Polym. 2016;13(12):1157–1178.
  • Yazdani Z, Mehrabanjoubani P, Rafiei A, et al. Combined effect of cold atmospheric plasma and curcumin in melanoma cancer. Biomed Res Int. 2021;2021:1969863. doi:10.1155/2021/1969863.
  • Yan DY, Xiao HJ, Zhu W, et al. The role of aquaporins in the anti-glioblastoma capacity of the cold plasma-stimulated medium. J Phys D Appl Phys. 2017;50(5):055401. doi:10.1088/1361-6463/aa53d6.
  • Platel V, Lechevalier D, Bourreau C, et al. Nox1 and nox2: two enzymes that promote endothelial-to-mesenchymal transition induced by melanoma conditioned media. Pharmacol Res. 2022;177:106097.
  • Pecchillo CT, Ammendola R, Cattaneo F, et al. Nox dependent ros generation and cell metabolism. Int J Mol Sci. 2023;24(3):2086.
  • Kumar N, Attri P, Yadav DK, et al. Induced apoptosis in melanocytes cancer cell and oxidation in biomolecules through deuterium oxide generated from atmospheric pressure non-thermal plasma jet. Sci Rep. 2014;4:7589. doi:10.1038/srep07589.
  • Ishaq M, Evans MD, Ostrikov KK. Atmospheric pressure gas plasma-induced colorectal cancer cell death is mediated by nox2-ask1 apoptosis pathways and oxidative stress is mitigated by srx-nrf2 anti-oxidant system. Biochim Biophys Acta. 2014;1843(12):2827–2837. doi:10.1016/j.bbamcr.2014.08.011.
  • Attri P, Park JH, De Backer J, et al. Structural modification of nadph oxidase activator (noxa 1) by oxidative stress: an experimental and computational study. Int J Biol Macromol. 2020;163:2405–2414.
  • Heinzelmann S, Bauer G. Multiple protective functions of catalase against intercellular apoptosis-inducing ros signaling of human tumor cells. Biol Chem. 2010;391(6):675–693. doi:10.1515/BC.2010.068.
  • Riethmüller M, Burger N, Bauer G. Singlet oxygen treatment of tumor cells triggers extracellular singlet oxygen generation, catalase inactivation and reactivation of intercellular apoptosis-inducing signaling. Redox Biol. 2015;6:157–168. doi:10.1016/j.redox.2015.07.006.
  • Bauer G. Increasing the endogenous no level causes catalase inactivation and reactivation of intercellular apoptosis signaling specifically in tumor cells. Redox Biol. 2015;6:353–371. doi:10.1016/j.redox.2015.07.017.
  • Bauer G. The synergistic effect between hydrogen peroxide and nitrite, two long-lived molecular species from cold atmospheric plasma, triggers tumor cells to induce their own cell death. Redox Biol. 2019;26:101291. doi:10.1016/j.redox.2019.101291.
  • Xia J, Zeng W, Xia Y, et al. Cold atmospheric plasma induces apoptosis of melanoma cells via sestrin2-mediated nitric oxide synthase signaling. J Biophotonics. 2019;12(1):e201800046.
  • Rojo DLVM, Chapman E, Zhang DD. Nrf2 and the hallmarks of cancer. Cancer Cell. 2018;34(1):21–43. doi:10.1016/j.ccell.2018.03.022.
  • De Backer J, Lin A, Berghe WV, et al. Cytoglobin inhibits non-thermal plasma-induced apoptosis in melanoma cells through regulation of the nrf2-mediated antioxidant response. Redox Biol. 2022;55:102399. doi:10.1016/j.redox.2022.102399.
  • Sun T, Yu S, Song X, et al. Cold plasma irradiation regulates inflammation and oxidative stress in human bronchial epithelial cells and human non-small cell lung carcinoma. Radiat Res. 2022;197(2):166–174. doi:10.1667/RADE-20-00178.1.
  • Schmidt A, Dietrich S, Steuer A, et al. Non-thermal plasma activates human keratinocytes by stimulation of antioxidant and phase ii pathways. J Biol Chem. 2015;290(11):6731–6750. doi:10.1074/jbc.M114.603555.
  • Ma J, Yu KN, Cheng C, et al. Targeting nrf2-mediated heme oxygenase-1 enhances non-thermal plasma-induced cell death in non-small-cell lung cancer a549 cells. Arch Biochem Biophys. 2018;658:54–65.
  • Kumar N, Perez-Novo C, Shaw P, et al. Physical plasma-derived oxidants sensitize pancreatic cancer cells to ferroptotic cell death. Free Radic Biol Med. 2021;166:187–200.
  • Liu T, Lv YF, Zhao JL, et al. Regulation of nrf2 by phosphorylation: consequences for biological function and therapeutic implications. Free Radic Biol Med. 2021;168:129–141. doi:10.1016/j.freeradbiomed.2021.03.034.
  • Hayes JD, Mcmahon M. Nrf2 and keap1 mutations: permanent activation of an adaptive response in cancer. Trends Biochem Sci. 2009;34(4):176–188. doi:10.1016/j.tibs.2008.12.008.
  • Bekeschus S, Freund E, Wende K, et al. Hmox1 upregulation is a mutual marker in human tumor cells exposed to physical plasma-derived oxidants. Antioxidants (Basel). 2018;7(11):151. doi:10.3390/antiox7110151.
  • Nakaso K, Yano H, Fukuhara Y, et al. Pi3k is a key molecule in the nrf2-mediated regulation of antioxidative proteins by hemin in human neuroblastoma cells. FEBS Lett. 2003;546(2-3):181–184. doi:10.1016/s0014-5793(03)00517-9.
  • Feng Y, Ju Y, Yan Z, et al. Protective role of wogonin following traumatic brain injury by reducing oxidative stress and apoptosis via the pi3k/nrf2/ho-1 pathway. Int J Mol Med. 2022;49(4):53. doi:10.3892/ijmm.2022.5109.
  • Kim KC, Ruwan KM, Kang KA, et al. Exposure of keratinocytes to non-thermal dielectric barrier discharge plasma increases the level of 8-oxoguanine via inhibition of its repair enzyme. Mol Med Rep. 2017;16(5):6870–6875. doi:10.3892/mmr.2017.7454.
  • Adhikari M, Adhikari B, Ghimire B, et al. Cold atmospheric plasma and silymarin nanoemulsion activate autophagy in human melanoma cells. Int J Mol Sci. 2020;21(6):1939. doi:10.3390/ijms21061939.
  • Yoshikawa N, Liu W, Nakamura K, et al. Plasma-activated medium promotes autophagic cell death along with alteration of the mtor pathway. Sci Rep. 2020;10(1):1614. doi:10.1038/s41598-020-58667-3.
  • Xu C, Li L, Wang C, et al. Effects of g-rh2 on mast cell-mediated anaphylaxis via akt-nrf2/nf-κb and mapk-nrf2/nf-κb pathways. J Ginseng Res. 2022;46(4):550–560.
  • Jin M, Wang J, Ji X, et al. Mcur1 facilitates epithelial-mesenchymal transition and metastasis via the mitochondrial calcium dependent ros/nrf2/notch pathway in hepatocellular carcinoma. J Exp Clin Cancer Res. 2019;38(1):136. doi:10.1186/s13046-019-1135-x.
  • Yang J, Nie J, Ma X, et al. Targeting pi3k in cancer: mechanisms and advances in clinical trials. Mol Cancer. 2019;18(1):26. doi:10.1186/s12943-019-0954-x.
  • Chen X, Li Y, Feng M, et al. Maduramicin induces cardiac muscle cell death by the ros-dependent pten/akt-erk1/2 signaling pathway. J Cell Physiol. 2019;234(7):10964–10976.
  • Russo T, Zambrano N, Esposito F, et al. A p53-independent pathway for activation of waf1/cip1 expression following oxidative stress. J Biol Chem. 1995;270(49):29386–29391.
  • Kim SY, Kim HJ, Kang SU, et al. Non-thermal plasma induces akt degradation through turn-on the mul1 e3 ligase in head and neck cancer. Oncotarget. 2015;6(32):33382–33396. doi:10.18632/oncotarget.5407.
  • Semenza GL. Hypoxia-inducible factors: mediators of cancer progression and targets for cancer therapy. Trends Pharmacol Sci. 2012;33(4):207–214. doi:10.1016/j.tips.2012.01.005.
  • Xu K, Yin N, Peng M, et al. Glycolysis fuels phosphoinositide 3-kinase signaling to bolster t cell immunity. Science. 2021;371(6527):405–410. doi:10.1126/science.abb2683.
  • Zhou Y, Zhang Y, Bao J, et al. Low temperature plasma suppresses lung cancer cells growth via vegf/vegfr2/ras/erk axis. Molecules. 2022;27(18):5934. doi:10.3390/molecules27185934.
  • Li W, Yu H, Ding D, et al. Cold atmospheric plasma and iron oxide-based magnetic nanoparticles for synergetic lung cancer therapy. Free Radic Biol Med. 2019;130:71–81.
  • Martínez-Limón A, Joaquin M, Caballero M, et al. The p38 pathway: from biology to cancer therapy. Int J Mol Sci. 2020;21(6):1913. doi:10.3390/ijms21061913.
  • Ahn HJ, Kim KI, Hoan NN, et al. Targeting cancer cells with reactive oxygen and nitrogen species generated by atmospheric-pressure air plasma. PLoS One. 2014;9(1):e86173. doi:10.1371/journal.pone.0086173.
  • Kang SU, Cho JH, Chang JW, et al. Nonthermal plasma induces head and neck cancer cell death: the potential involvement of mitogen-activated protein kinase-dependent mitochondrial reactive oxygen species. Cell Death Dis. 2014;5(2):e1056. doi:10.1038/cddis.2014.33.
  • Akter M, Lim JS, Choi EH, et al. Non-thermal biocompatible plasma jet induction of apoptosis in brain cancer cells. Cells. 2021;10(2):236. doi:10.3390/cells10020236.
  • Lee SY, Kang SU, Kim KI, et al. Nonthermal plasma induces apoptosis in atc cells: involvement of jnk and p38 mapk-dependent ros. Yonsei Med J. 2014;55(6):1640–1647. doi:10.3349/ymj.2014.55.6.1640.
  • Akter M, Jangra A, Choi SA, et al. Non-thermal atmospheric pressure bio-compatible plasma stimulates apoptosis via p38/mapk mechanism in u87 malignant glioblastoma. Cancers (Basel). 2020;12(1):245. doi:10.3390/cancers12010245.
  • Ray PD, Huang BW, Tsuji Y. Reactive oxygen species (ros) homeostasis and redox regulation in cellular signaling. Cell Signal. 2012;24(5):981–990. doi:10.1016/j.cellsig.2012.01.008.
  • Ishaq M, Kumar S, Varinli H, et al. Atmospheric gas plasma-induced ros production activates tnf-ask1 pathway for the induction of melanoma cancer cell apoptosis. Mol Biol Cell. 2014;25(9):1523–1531.
  • Vandamme M, Robert E, Lerondel S, et al. Ros implication in a new antitumor strategy based on non-thermal plasma. Int J Cancer. 2012;130(9):2185–2194.
  • Hou J, Ma J, Yu KN, et al. Non-thermal plasma treatment altered gene expression profiling in non-small-cell lung cancer a549 cells. BMC Genomics. 2015;16(1):435. doi:10.1186/s12864-015-1644-8.
  • Yang X, Chen G, Yu KN, et al. Cold atmospheric plasma induces gsdme-dependent pyroptotic signaling pathway via ros generation in tumor cells. Cell Death Dis. 2020;11(4):295. doi:10.1038/s41419-020-2459-3.
  • Xiang L, Xu X, Zhang S, et al. Cold atmospheric plasma conveys selectivity on triple negative breast cancer cells both in vitro and in vivo. Free Radic Biol Med. 2018;124:205–213.
  • Bekeschus S, Ispirjan M, Freund E, et al. Gas plasma exposure of glioblastoma is cytotoxic and immunomodulatory in patient-derived gbm tissue. Cancers (Basel). 2022;14(3):813. doi:10.3390/cancers14030813.
  • Moniruzzaman R, Rehman MU, Zhao QL, et al. Roles of intracellular and extracellular ros formation in apoptosis induced by cold atmospheric helium plasma and x-irradiation in the presence of sulfasalazine. Free Radic Biol Med. 2018;129:537–547.
  • Tanaka H, Mizuno M, Katsumata Y, et al. Oxidative stress-dependent and -independent death of glioblastoma cells induced by non-thermal plasma-exposed solutions. Sci Rep. 2019;9(1):13657. doi:10.1038/s41598-019-50136-w.
  • Sprowles A, Robinson D, Wu YM, et al. C-jun controls the efficiency of map kinase signaling by transcriptional repression of map kinase phosphatases. Exp Cell Res. 2005;308(2):459–468. doi:10.1016/j.yexcr.2005.05.010.
  • Tanaka H, Nakamura K, Mizuno M, et al. Non-thermal atmospheric pressure plasma activates lactate in ringer’s solution for anti-tumor effects. Sci Rep. 2016;6:36282. doi:10.1038/srep36282.
  • Kaushik N, Uddin N, Sim GB, et al. Responses of solid tumor cells in dmem to reactive oxygen species generated by non-thermal plasma and chemically induced ros systems. Sci Rep. 2015;5:8587. doi:10.1038/srep08587.
  • Li Y, Lv Y, Zhu Y, et al. Low-temperature plasma-activated medium inhibited proliferation and progression of lung cancer by targeting the pi3k/akt and mapk pathways. Oxid Med Cell Longev. 2022;2022:9014501.
  • Schmidt A, Bekeschus S, Jarick K, et al. Cold physical plasma modulates p53 and mitogen-activated protein kinase signaling in keratinocytes. Oxid Med Cell Longev. 2019;2019:7017363. doi:10.1155/2019/7017363.
  • Jang JY, Hong YJ, Lim J, et al. Cold atmospheric plasma (cap), a novel physicochemical source, induces neural differentiation through cross-talk between the specific rons Cascade and trk/ras/erk signaling pathway. Biomaterials. 2018;156:258–273. doi:10.1016/j.biomaterials.2017.11.045.
  • Fan J, Ren D, Wang J, et al. Bruceine d induces lung cancer cell apoptosis and autophagy via the ros/mapk signaling pathway in vitro and in vivo. Cell Death Dis. 2020;11(2):126. doi:10.1038/s41419-020-2317-3.
  • Li Y, Liang R, Zhang X, et al. Copper chaperone for superoxide dismutase promotes breast cancer cell proliferation and migration via ros-mediated mapk/erk signaling. Front Pharmacol. 2019;10:356. doi:10.3389/fphar.2019.00356.
  • Sugiura R, Satoh R, Takasaki T. Erk: a double-edged sword in cancer. Erk-dependent apoptosis as a potential therapeutic strategy for cancer. Cells. 2021;10(10):2509. doi:10.3390/cells10102509.
  • León-Buitimea A, Rodríguez-Fragoso L, Lauer FT, et al. Ethanol-induced oxidative stress is associated with egf receptor phosphorylation in mcf-10a cells overexpressing cyp2e1. Toxicol Lett. 2012;209(2):161–165. doi:10.1016/j.toxlet.2011.12.009.
  • Zaballos MA, Acuña-Ruiz A, Morante M, et al. Regulators of the ras-erk pathway as therapeutic targets in thyroid cancer. Endocr Relat Cancer. 2019;26(6):R319–R344. doi:10.1530/ERC-19-0098.
  • Chang JW, Kang SU, Shin YS, et al. Non-thermal atmospheric pressure plasma inhibits thyroid papillary cancer cell invasion via cytoskeletal modulation, altered mmp-2/-9/upa activity. PLoS One. 2014;9(3):e92198. doi:10.1371/journal.pone.0092198.
  • Su X, Shen Z, Yang Q, et al. Vitamin c kills thyroid cancer cells through ros-dependent inhibition of mapk/erk and pi3k/akt pathways via distinct mechanisms. Theranostics. 2019;9(15):4461–4473. doi:10.7150/thno.35219.
  • Tanaka H, Mizuno M, Ishikawa K, et al. Plasma-activated medium selectively kills glioblastoma brain tumor cells by down-regulating a survival signaling molecule, akt kinase. Plasma Med. 2011;1(3-4):265–277. doi:10.1615/PlasmaMed.2012006275.
  • Tanaka H, Mizuno M, Ishikawa K, et al. Cell survival and proliferation signaling pathways are downregulated by plasma-activated medium in glioblastoma brain tumor cells. Plasma Med. 2012;2(4):207–220. doi:10.1615/PlasmaMed.2013008267.
  • Yu H, Lin L, Zhang Z, et al. Targeting nf-κb pathway for the therapy of diseases: mechanism and clinical study. Signal Transduct Target Ther. 2020;5(1):209.
  • Chang JW, Kang SU, Shin YS, et al. Combination of ntp with cetuximab inhibited invasion/migration of cetuximab-resistant oscc cells: involvement of nf-κb signaling. Sci Rep. 2015;5:18208. doi:10.1038/srep18208.
  • Morgan MJ, Liu ZG. Crosstalk of reactive oxygen species and nf-κb signaling. Cell Res. 2011;21(1):103–115. doi:10.1038/cr.2010.178.
  • Reynaert NL, Ckless K, Korn SH, et al. Nitric oxide represses inhibitory kappab kinase through s-nitrosylation. Proc Natl Acad Sci U S A. 2004;101(24):8945–8950.
  • Reynaert NL, van der Vliet A, Guala AS, et al. Dynamic redox control of nf-kappab through glutaredoxin-regulated s-glutathionylation of inhibitory kappab kinase beta. Proc Natl Acad Sci U S A. 2006;103(35):13086–13091.
  • Tanaka H, Mizuno M, Kikkawa F, et al. Interactions between a plasma-activated medium and cancer cells. Plasma Med. 2016;6(1):101–106. doi:10.1615/PlasmaMed.2016015838.
  • Dodson M, de la Vega MR, Cholanians AB, et al. Modulating nrf2 in disease: timing is everything. Annu Rev Pharmacol Toxicol. 2019;59:555–575. doi:10.1146/annurev-pharmtox-010818-021856.
  • Wakabayashi N, Slocum SL, Skoko JJ, et al. When nrf2 talks, who’s listening? Antioxid Redox Signal. 2010;13(11):1649–1663. doi:10.1089/ars.2010.3216.
  • Kaur S, Lyte P, Garay M, et al. Galvanic zinc-copper microparticles produce electrical stimulation that reduces the inflammatory and immune responses in skin. Arch Dermatol Res. 2011;303(8):551–562. doi:10.1007/s00403-011-1145-9.
  • Ji G, Liu D, Liu J, et al. P38 mitogen-activated protein kinase up-regulates nf-kappab transcriptional activation through rela phosphorylation during stretch-induced myogenesis. Biochem Biophys Res Commun. 2010;391(1):547–551. doi:10.1016/j.bbrc.2009.11.095.
  • Larsen L, Størling J, Darville M, et al. Extracellular signal-regulated kinase is essential for interleukin-1-induced and nuclear factor kappab-mediated gene expression in insulin-producing ins-1e cells. Diabetologia. 2005;48(12):2582–2590. doi:10.1007/s00125-005-0039-9.
  • Wagner EF, Nebreda ÁR. Signal integration by jnk and p38 mapk pathways in cancer development. Nat Rev Cancer. 2009;9(8):537–549. doi:10.1038/nrc2694.
  • Brundage ME, Tandon P, Eaves DW, et al. Maf mediates crosstalk between ras-mapk and mtor signaling in nf1. Oncogene. 2014;33(49):5626–5636. doi:10.1038/onc.2013.506.
  • Guo F, Li J, Du W, et al. Mtor regulates dna damage response through nf-κb-mediated fancd2 pathway in hematopoietic cells. Leukemia. 2013;27(10):2040–2046. doi:10.1038/leu.2013.93.
  • He C, Klionsky DJ. Regulation mechanisms and signaling pathways of autophagy. Annu Rev Genet. 2009;43:67–93. doi:10.1146/annurev-genet-102808-114910.
  • Onorati AV, Dyczynski M, Ojha R, et al. Targeting autophagy in cancer. Cancer. 2018;124(16):3307–3318. doi:10.1002/cncr.31335.
  • Scherz-Shouval R, Shvets E, Fass E, et al. Reactive oxygen species are essential for autophagy and specifically regulate the activity of atg4. Embo J. 2007;26(7):1749–1760. doi:10.1038/sj.emboj.7601623.
  • Wang B, Zhong Y, Li Q, et al. Autophagy of macrophages is regulated by pi3k/akt/mtor signalling in the development of diabetic encephalopathy. Aging (Albany NY). 2018;10(10):2772–2782. doi:10.18632/aging.101586.
  • Zhou YY, Li Y, Jiang WQ, et al. Mapk/jnk signalling: a potential autophagy regulation pathway. Biosci Rep. 2015;35(3):e00199.
  • Yu X, Long YC, Shen HM. Differential regulatory functions of three classes of phosphatidylinositol and phosphoinositide 3-kinases in autophagy. Autophagy. 2015;11(10):1711–1728. doi:10.1080/15548627.2015.1043076.
  • Kma L, Baruah TJ. The interplay of ros and the pi3k/akt pathway in autophagy regulation. Biotechnol Appl Biochem. 2022;69(1):248–264. doi:10.1002/bab.2104.
  • Bach M, Larance M, James DE, et al. The serine/threonine kinase ulk1 is a target of multiple phosphorylation events. Biochem J. 2011;440(2):283–291. doi:10.1042/BJ20101894.
  • Yang Z, Zou X, Feng P, et al. Inhibition of the pi3k/akt signaling pathway or overexpression of beclin1 blocks reinfection of streptococcus pneumoniae after infection of influenza a virus in severe community-acquired pneumonia. Inflammation. 2019;42(5):1741–1753. doi:10.1007/s10753-019-01035-9.
  • Jia R, Bonifacino JS. Negative regulation of autophagy by uba6-birc6-mediated ubiquitination of lc3. Elife. 2019;8:e50034. doi:10.7554/eLife.50034.
  • Wang D, Zhang J, Cai L, et al. Cold atmospheric plasma conveys selectivity against hepatocellular carcinoma cells via triggering egfr(tyr1068)-mediated autophagy. Front Oncol. 2022;12:895106. doi:10.3389/fonc.2022.895106.
  • Shi L, Ito F, Wang Y, et al. Non-thermal plasma induces a stress response in mesothelioma cells resulting in increased endocytosis, lysosome biogenesis and autophagy. Free Radic Biol Med. 2017;108:904–917.
  • Jiang X, Stockwell BR, Conrad M. Ferroptosis: mechanisms, biology and role in disease. Nat Rev Mol Cell Biol. 2021;22(4):266–282. doi:10.1038/s41580-020-00324-8.
  • Furuta T, Shi L, Toyokuni S. Non-thermal plasma as a simple ferroptosis inducer in cancer cells: a possible role of ferritin. Pathol Int. 2018;68(7):442–443. doi:10.1111/pin.12665.
  • Seibt TM, Proneth B, Conrad M. Role of gpx4 in ferroptosis and its pharmacological implication. Free Radic Biol Med. 2019;133:144–152. doi:10.1016/j.freeradbiomed.2018.09.014.
  • Liu DS, Duong CP, Haupt S, et al. Inhibiting the system x(c)(-)/glutathione axis selectively targets cancers with mutant-p53 accumulation. Nat Commun. 2017;8:14844. doi:10.1038/ncomms14844.
  • Jiang L, Zheng H, Lyu Q, et al. Lysosomal nitric oxide determines transition from autophagy to ferroptosis after exposure to plasma-activated ringer’s lactate. Redox Biol. 2021;43:101989. doi:10.1016/j.redox.2021.101989.
  • Yue J, López JM. Understanding mapk signaling pathways in apoptosis. Int J Mol Sci. 2020;21(7):2346. doi:10.3390/ijms21072346.
  • Yazdani Z, Biparva P, Rafiei A, et al. Combination effect of cold atmospheric plasma with green synthesized zero-valent iron nanoparticles in the treatment of melanoma cancer model. PLoS One. 2022;17(12):e279120. doi:10.1371/journal.pone.0279120.
  • Smolková B, Lunova M, Lynnyk A, et al. Non-thermal plasma, as a new physicochemical source, to induce redox imbalance and subsequent cell death in liver cancer cell lines. Cell Physiol Biochem. 2019;52(1):119–140.
  • Tuhvatulin AI, Sysolyatina EV, Scheblyakov DV, et al. Non-thermal plasma causes p53-dependent apoptosis in human Colon carcinoma cells. Acta Naturae. 2012;4(3):82–87. doi:10.32607/20758251-2012-4-3-82-87.
  • Chen J. The cell-cycle arrest and apoptotic functions of p53 in tumor initiation and progression. Cold Spring Harb Perspect Med. 2016;6(3):a026104. doi:10.1101/cshperspect.a026104.
  • Lamouille S, Xu J, Derynck R. Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol. 2014;15(3):178–196. doi:10.1038/nrm3758.
  • Makrodouli E, Oikonomou E, Koc M, et al. Braf and ras oncogenes regulate rho gtpase pathways to mediate migration and invasion properties in human Colon cancer cells: a comparative study. Mol Cancer. 2011;10:118. doi:10.1186/1476-4598-10-118.
  • Gulhati P, Bowen KA, Liu J, et al. Mtorc1 and mtorc2 regulate emt, motility, and metastasis of colorectal cancer via rhoa and rac1 signaling pathways. Cancer Res. 2011;71(9):3246–3256. doi:10.1158/0008-5472.CAN-10-4058.
  • Lamouille S, Connolly E, Smyth JW, et al. Tgf-β-induced activation of mtor complex 2 drives epithelial-mesenchymal transition and cell invasion. J Cell Sci. 2012;125(Pt 5):1259–1273. doi:10.1242/jcs.095299.
  • Ren F, Tang R, Zhang X, et al. Overexpression of mmp family members functions as prognostic biomarker for breast cancer patients: a systematic review and meta-analysis. PLoS One. 2015;10(8):e135544. doi:10.1371/journal.pone.0135544.
  • Kim CH, Bahn JH, Lee SH, et al. Induction of cell growth arrest by atmospheric non-thermal plasma in colorectal cancer cells. J Biotechnol. 2010;150(4):530–538.
  • Valenta T, Hausmann G, Basler K. The many faces and functions of β-catenin. Embo J. 2012;31(12):2714–2736. doi:10.1038/emboj.2012.150.
  • Najafi M, Farhood B, Mortezaee K. Cancer stem cells (cscs) in cancer progression and therapy. J Cell Physiol. 2019;234(6):8381–8395. doi:10.1002/jcp.27740.
  • Griffin MF, Ibrahim A, Seifalian AM, et al. Argon plasma modification promotes adipose derived stem cells osteogenic and chondrogenic differentiation on nanocomposite polyurethane scaffolds; implications for skeletal tissue engineering. Mater Sci Eng C Mater Biol Appl. 2019;105:110085. doi:10.1016/j.msec.2019.110085.
  • Xiong Z, Zhao S, Yan X. Nerve stem cell differentiation by a one-step cold atmospheric plasma treatment in vitro. J Vis Exp. 2019;11(143):e58663.
  • Han I, Choi EH. The role of non-thermal atmospheric pressure biocompatible plasma in the differentiation of osteoblastic precursor cells, mc3t3-e1. Oncotarget. 2017;8(22):36399–36409. doi:10.18632/oncotarget.16821.
  • Hwang JH, Lee HY, Chung KB, et al. Non-thermal atmospheric pressure plasma activates wnt/β-catenin signaling in dermal papilla cells. Sci Rep. 2021;11(1):16125. doi:10.1038/s41598-021-95650-y.
  • Wada N, Ikeda JI, Tanaka H, et al. Effect of plasma-activated medium on the decrease of tumorigenic population in lymphoma. Pathol Res Pract. 2017;213(7):773–777.
  • Xu D, Luo X, Xu Y, et al. The effects of cold atmospheric plasma on cell adhesion, differentiation, migration, apoptosis and drug sensitivity of multiple myeloma. Biochem Biophys Res Commun. 2016;473(4):1125–1132.
  • Xu D, Cui Q, Xu Y, et al. Plasma enhance drug sensitivity to bortezomib by inhibition of cyp1a1 in myeloma cells. Transl Cancer Res. 2019;8(8):2841–2847.
  • Qi M, Zhao X, Fan R, et al. Cold atmospheric plasma suppressed mm in vivo engraftment by increasing ros and inhibiting the notch signaling pathway. Molecules. 2022;27(18):5832. doi:10.3390/molecules27185832.
  • Cao Y, Fang Y, Cai J, et al. Ros functions as an upstream trigger for autophagy to drive hematopoietic stem cell differentiation. Hematology. 2016;21(10):613–618. doi:10.1080/10245332.2016.1165446.
  • Kim TH, Woo JS, Kim YK, et al. Silibinin induces cell death through reactive oxygen species-dependent downregulation of notch-1/erk/akt signaling in human breast cancer cells. J Pharmacol Exp Ther. 2014;349(2):268–278. doi:10.1124/jpet.113.207563.
  • Yang L, Shi P, Zhao G, et al. Targeting cancer stem cell pathways for cancer therapy. Signal Transduct Target Ther. 2020;5(1):8.
  • Nitsch A, Strakeljahn S, Jacoby JM, et al. New approach against chondrosoma cells-cold plasma treatment inhibits cell motility and metabolism, and leads to apoptosis. Biomedicines. 2022;10(3):688.
  • Courtnay R, Ngo DC, Malik N, et al. Cancer metabolism and the warburg effect: the role of hif-1 and pi3k. Mol Biol Rep. 2015;42(4):841–851.
  • Hua D, Cai D, Ning M, et al. Cold atmospheric plasma selectively induces g(0)/g(1) cell cycle arrest and ­apoptosis in ar-independent prostate cancer cells. J Cancer. 2021;12(19):5977–5986.
  • Vaquero J, Judée F, Vallette M, et al. Cold-atmospheric plasma induces tumor cell death in preclinical in vivo and in vitro models of human cholangiocarcinoma. Cancers (Basel). 2020;12(5):1280.
  • Tomić S, Petrović A, Puač N, et al. Plasma-activated medium potentiates the immunogenicity of tumor cell lysates for dendritic cell-based cancer vaccines. Cancers (Basel). 2021;13(7):1626.
  • Bekeschus S, Kolata J, Muller A, et al. Differential viability of eight human blood mononuclear cell subpopulations after plasma treatment. Plasma Med. 2013;3(1-2):1–13.
  • Lewis CE, Pollard JW. Distinct role of macrophages in different tumor microenvironments. Cancer Res. 2006;66(2):605–612.
  • Chhor V, Le Charpentier T, Lebon S, et al. Characterization of phenotype markers and neuronotoxic potential of polarised primary microglia in vitro. Brain Behav Immun. 2013;32:70–85.
  • Kaushik NK, Kaushik N, Adhikari M, et al. Preventing the solid cancer progression via release of anticancer-cytokines in co-culture with cold plasma-stimulated macrophages. Cancers (Basel). 2019;11(6):842.
  • Fang T, Cao X, Shen B, et al. Injectable cold atmospheric plasma-activated immunotherapeutic hydrogel for enhanced cancer treatment. Biomaterials. 2023;300:122189.
  • Morris G, Gevezova M, Sarafian V, et al. Redox regulation of the immune response. Cell Mol Immunol. 2022;19(10):1079–1101. doi:10.1038/s41423-022-00902-0.
  • Miller V, Lin A, Fridman G, et al. Plasma stimulation of migration of macrophages. Plasma Process Polym. 2014;11(12):1193–1197.
  • Chen G, Chen Z, Wen D, et al. Transdermal cold atmospheric plasma-mediated immune checkpoint blockade therapy. Proc Natl Acad Sci U S A. 2020;117(7):3687–3692.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.