414
Views
132
CrossRef citations to date
0
Altmetric
Original Article

Hydrogen peroxide-induced apoptosis in HL-60 cells requires caspase-3 activation

, , , &
Pages 73-83 | Received 26 Jun 1998, Accepted 27 Aug 1998, Published online: 07 Jul 2009

References

  • Buttke T.M., Sandstrom P.A. Oxidative stress as a mediator of apoptosis. Immunology Today 1994; 15: 7–10
  • Halliwell B., Gutteridge M.C. Role of free radicals and catalytic metal ions in human disease: an overview. Methods in Enzymology 1990; 186: 1–85
  • Stoian I., Oros A., Moldoveanu E. Apoptosis and free radicals. Biochemical and Molecular Medicine 1996; 59: 93–97
  • Jacobson M.D. Reactive oxygen species and programmed cell death. Trends in Biochemical Science 1996; 21: 83–86
  • Shimizu S., Eguchi Y., Kosaka H., Kamiike W., Matsuda H., Tsujimoto Y. Prevention of hypoxia-induced cell death by Bcl-2 and Bcl-xL. Nature 1995; 374: 811–813
  • Jacobson M.D., Raff M.C. Programmed cell death and Bcl-2 protection in very low oxygen. Nature 1995; 374: 814–816
  • Muschel R.J., Bernhard E.J., Garza L., McKenna W.G., Koch C.J. Induction of apoptosis at different oxygen tensions: evidence that oxygen radicals do not mediate apoptotic signaling. Cancer Research 1995; 55: 995–998
  • Clement M., Stamenkovic I. Superoxide anion is a natural inhibitor of Fas-mediated cell death. EMBO Journal 1996; 15: 216–225
  • Alnemri E.S., Livingston D.J., Nicholson D.W., Salvesen G., Thornberry N.A., Wong W.W., Yuan J. Human ICE/CED-3 protease nomenclature. Cell 1996; 87: 171–171
  • Patel T., Gores G.J., Kaufmann S.H. The role of proteases during apoptosis. FASEB Journal 1996; 10: 587–597
  • Nagata S. Apoptosis by death factor. Cell 1997; 88: 355–365
  • Schlegel J., Peters I., Orrenius S., Miller D.K., Thornberry N.A., Yamin T., Nicholson D.W. CPP32/apopain is a key interleukin 1β converting enzyme-like protease involved in Fas-mediated apoptosis. Journal of Biological Chemistry 1996; 271: 1841–1844
  • Dubrez L., Savoy I., Hamman A., Solary E. Pivotal role of a DEVD-sensitive step in etoposide-induced and Fas-mediated apoptotic pathways. EMBO Journal 1996; 15: 5504–5512
  • Alam A., Braun M.Y., Hartgers F., Lesage S., Cohen L., Hugo P., Denis F., Sekaly H. Specific activation of the cysteine protease CPP32 during the negative selection of T cells in the thymus. Journal of Experimental Medicine 1997; 186: 1503–1512
  • Kangas A., Nicholson D.W., Holtta E. Involvement of CPP32/caspase-3 in c-Myc-induced apoptosis. Oncogene 1998; 16: 387–398
  • Monney L., Otter I., Olivier R., Ozer H.L., Haas A.L., Omura S., Borner C. Defects in the ubiquitin pathway induce caspase-independent apoptosis blocked by Bcl-2. Journal of Biological Chemistry 1998; 273: 6121–6131
  • MacFarlane M., Cain K., Sun X.M., Alnemri E.S., Cohen G.M. Processing/activation of at least four interleukin 1β converting enzyme-like proteases occurs during the execution phase of apoptosis in human monocytic tumor cells. Journal of Cell Biology 1997; 137: 469–479
  • Nicholson D.W., Ali A., Thornberry N.A., Vaillancourt J.P., Ding C.K., Gallant M., Gareau Y., Griffin P.R., Labelle M., Lazebnik Y.A., Munday N.A., Raju S.M., Smulson M.E., Yamin T., Yu V.L., Miller D.K. Identification and inhibition of the ICE/CED-3 protease necessary for mammalian apoptosis. Nature 1995; 376: 37–43
  • Hirata H., Takahashi A., Kobayashi S., Yonehara S., Sawai H., Okazaki T., Yamamoto K., Sasada M. Caspases are activated in a branched protease cascade and control distinct downstream processes in Fasinduced apoptosis. Journal of Experimental Medicine 1998; 187: 587–600
  • Burton K. A study of the conditions and mechanism of the diphenylamine reaction for the colorimetric estimation of deoxyribonucleic acid. Biochemical Journal 1956; 62: 315–323
  • Kagaya S., Kitanaka C., Noguchi K., Mochizuki T., Sugiyama A., Asai A., Yasuhara N., Eguchi Y., Tsujimoto Y., Kuchino Y. A functional role for death proteases in s-Myc- and c-Myc-mediated apoptosis. Molecular and Cellular Biology 1997; 17: 6736–6745
  • Okada C.Y., Rechsteiner M. Introduction of macromolecules into cultured mammalian cells by osmotic lysis of pinocytic vesicles. Cell 1982; 29: 33–41
  • Moore M.W., Carbone F.R., Bevan M.J. Introduction of soluble protein into the class I pathway of antigen processing and presentation. Cell 1988; 54: 777–785
  • Drexler H.C.A. Activation of the cell death program by inhibition of proteasome function. Proceeding of the National Academy of Sciences of the United States of America 1997; 94: 855–860
  • Lennon S.V., Martin S.J., Cotter T.G. Dose-dependent induction of apoptosis in human tumor cell lines by widely diverging stimuli. Cell Proliferation 1991; 24: 203–214
  • Hampton M.B., Orrenius S. Dual regulation of caspase activity by hydrogen peroxide: implications for apoptosis. FEBS Letters 1997; 414: 552–556
  • Ueda N., Shah S.V. Endonuclease-induced DNA damage and cell death in oxidant injury to renal tubular epithelial cells. Journal of Clinical Investigation 1992; 90: 2593–2597
  • Verhaegen S., McGowan A.J., Brophy A.R., Fernandes R.S., Cotter T.G. Inhibition of apoptosis by antioxidants in the human HL-60 leukemia cell line. Biochemical Pharmacology 1995; 50: 1021–1029
  • Shimizu S., Umezawa K., Takada M., Arber N., Imoto M. Induction of hydrogen peroxide production and bax expression by caspase-3(-like) proteases in tyrosine kinase inhibitor-induced apoptosis in human small cell lung carcinoma cells. Experimental Cell Research 1998; 238: 197–203
  • Messmer U.K., Brune B. Nitric oxide-induced apoptosis: p53-dependent and p53-independent signalling pathways. Biochemical Journal 1995; 319: 299–305
  • Brockhaus F., Brune B. U937 apoptotic cell death by nitric oxide: Bcl-2 downregulation and caspase activation. Experimental Cell Research 1998; 238: 33–41
  • Yabuki M., Kariya S., Inai Y., Hamazaki K., Yoshioka T., Yasuda T., Horton A.A., Utsumi K. Molecular mechanisms of apoptosis in HL-60 cells induced by a nitric oxide-releasing compound. Free Radical Research 1997; 27: 325–335
  • Lin K.T., Xue J.Y., Nomen M., Spur B., Wong P.Y.K. Peroxinitrite-induced apoptosis in HL-60 cells. Journal of Biological Chemistry 1995; 270: 16487–16490
  • Kim Y.M., Talanian R.V., Billiar T.H. Nitric oxide inhibits apoptosis by preventing increases in caspase-3-like activity via two distinct mechanisms. Journal of Biological Chemistry 1997; 272: 31138–31148
  • Mohr S., Zech B., Lapetina E.G., Brune B. Inhibition of caspase-3 by S-nitrosation and oxidation caused by nitric oxide. Biochemical and Biophysical Research Communications 1997; 238: 387–391
  • Ogura T., Tatemichi M., Esumi H. Nitric oxide inhibits CPP-32 activity under redox regulation. Biochemical and Biophysical Research Communications 1997; 236: 365–369
  • Sen C.K., Packer L. Antioxidant and redox regulation of gene transcription. FASEB Journal 1996; 10: 709–720
  • Hyslop P.A., Hinshaw D.B., Scraufstatter I.U., Cochrane C.G., Kunz S., Vosbeck K. Hydrogen peroxide as a potent bacteriostatic antibiotic: implications for host defense. Free Radical Biology and Medicine 1995; 19: 31–37
  • Wierusz-Wysocka B., Wysocki H., Byks H., Zozulinska D., Wykretowicz A., Kazmierczak M. Metabolic control quality and free radical activity in diabetic patients. Diabetes Research and Clinical Practice 1995; 27: 193–197
  • Whyte M. ICE/CED-3 proteases in apoptosis. Trends in Cell Biology 1996; 6: 245–248
  • Lin K., Xue J., Lin M.C., Spokas E.G., Sun F.F., Wong P.Y. Peroxynitrite induces apoptosis of HL-60 cells by activation of a caspase-3 family protease. American Journal of Physiology 1998; 274: C855–C860
  • Longthorne V.L., Williams G.T. Caspase activity is required for commitment to Fas-mediated apoptosis. EMBO Journal 1997; 16: 3805–3812
  • Enari M., Talanian R.V., Wong W.W., Nagata S. Sequential activation of ICE-like and CPP32-like proteases during Fas-mediated apoptosis. Nature 1996; 380: 723–726
  • Suzuki A., Iwasaki M., Kato M., Wagai N. Sequential operation of ceramide synthesis and ICE cascade in CPT-11-initiated apoptotic death signaling. Experimental Cell Research 1997; 233: 41–47
  • Harvey K.J., Blomquist J.F., Ucker D.S. Commitment and effector phases of the physiological cell death pathway elucidated with respect to Bcl-2, caspase, and cyclin-dependent kinase activities. Molecular and Cellular Biology 1998; 18: 2912–2922
  • Shimura M., Ishizaka Y., Yuo A., Hatake K., Oshima M., Sasaki T., Takaku F. Characterization of room temperature induced apoptosis in HL-60. FEBS Letters 1997; 417: 379–384
  • Faleiro L., Kobayashi R., Fearnhead H., Lazebnik Y. Multiple species of CPP32 and Mch2 are the major active caspases present in apoptotic cells. EMBO Journal 1997; 16: 2271–2281

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.