4,612
Views
57
CrossRef citations to date
0
Altmetric
Research Article

Mathematical modeling of intraperitoneal drug delivery: simulation of drug distribution in a single tumor nodule

, , , , , & show all
Pages 491-501 | Received 05 Oct 2016, Accepted 05 Dec 2016, Published online: 09 Feb 2017

References

  • Ansaloni L, Coccolini F, Morosi L, et al. (2015). Pharmacokinetics of concomitant cisplatin and paclitaxel administered by hyperthermic intraperitoneal chemotherapy to patients with peritoneal carcinomatosis from epithelial ovarian cancer. Br J Cancer 112:306–12
  • Arifin D, Yiu K, Lee T, Wang CH. (2009). Chemotherapeutic drug transport to brain tumor. J Control Release 137:203–10
  • Au J, Guo P, Gao Y, et al. (2014). Multiscale tumor spatiokinetic model for intraperitoneal therapy. AAPS J 16:424–39
  • Barakat R, Sabbatini P, Bhaskaran D, et al. (2002). Intraperitoneal chemotherapy for ovarian carcinoma: results of long-term follow-up. J Clin Oncol 20:694–8
  • Baxter L, Jain R. (1989). Transport of fluid and macromolecules in tumors. I. Role of interstitial pressure and convection. Microvasc Res 37:77–104
  • Bird B, Stewart W, Lightfoot E. (2007). Transport phenomena. 2nd ed. New York, NY: John Wiley & Sons
  • Burges A, Schmalfeldt B. (2011). Ovarian cancer: diagnosis and treatment. Dtsch Arztebl Int 108:635–41
  • De Vlieghere E, Carlier C, Ceelen W, et al. (2016). Data on in vivo selection of SK-OV-3 Luc ovarian cancer cells and intraperitoneal tumor formation with low inoculation numbers. Data Brief 6:542–9
  • El-Kareh A, Secomb T. (2004). A theoretical model for intraperitoneal delivery of cisplatin and the effect of hyperthermia on drug penetration distance. Neoplasia 6:117–27
  • Favoriti P, Carbone G, Greco M, et al. (2016). Worldwide burden of colorectal cancer: a review. Updates Surg 68:7–11
  • Ferretti S, Allegrini P, Becquet M, McSheehy P. (2009). Tumor interstitial fluid pressure as an early-response marker for anticancer therapeutics. Neoplasia 11:874–81
  • Flessner M. (2005). The transport barrier in intraperitoneal therapy. Am J Physiol Renal Physiol 288:F433–42
  • Flessner M, Dedrick R, Schultz J. (1984). A distributed model of peritoneal-plasma transport: theoretical considerations. Am J Physiol 246:R597–607
  • Fukumura D, Jain RK. (2007). Tumour microvasculature and microenvironment: targets for anti-angiogenesis and normalization. Microvasc Res 74:72–84
  • Gremonprez F, Descamps B, Izmer A, et al. (2015). Pretreatment with VEGF(R)-inhibitors reduces interstitial fluid pressure, increases intraperitoneal chemotherapy drug penetration, and impedes tumor growth in a mouse colorectal carcinomatosis model. Oncotarget 6:29889–900
  • Goh Y, Kong H, Wang CH. (2001). Simulation of the delivery of doxorubicin to hepatoma. Pharm Res 18:761–70
  • Heldin C, Rubin K, Pietras K, Ostman A. (2004). High interstitial fluid pressure – an obstacle in cancer therapy. Nat Rev Cancer 4:806–13
  • Jain R, Cook A, Steele E. (1991). Haemodynamic and transport barriers to the treatment of solid tumours. Int J Radiat Biol 60:85–100
  • Kalyanasundaram S, Calhoun V, Leong K. (1997). A finite element model for predicting the distribution of drugs delivered intracranially to the brain. Am J Physiol 273:R1810–21
  • Kampan N, Madondo M, McNally O, et al. (2015). Paclitaxel and its evolving role in the management of ovarian cancer. BioMed Res Int 2015:413076
  • Kim M, Gillies R, Rejniak K. (2013). Current advances in mathematical modeling of anti-cancer drug penetration into tumor tissues. Front Oncol 3:278
  • Linninger A, Somayaji M, Mekarski M, Zhang L. (2008). Prediction of convection-enhanced drug delivery to the human brain. J Theor Biol 250:125–38
  • Los G, Mutsaers P, Lenglet WJ, et al. (1990). Platinum distribution in intraperitoneal tumors after intraperitoneal cisplatin treatment. Cancer Chemother Pharmacol 25:389–94
  • Miyagi Y, Fujiwara K, Kigawa J, et al. (2005). Intraperitoneal carboplatin infusion may be a pharmacologically more reasonable route than intravenous administration as a systemic chemotherapy. A comparative pharmacokinetic analysis of platinum using a new mathematical model after intraperitoneal vs. intravenous infusion of carboplatin – a Sankai Gynecology Study Group (SGSG) study. Gynecol Oncol 99:591–6
  • Nolph KD, Twardowski ZJ, Khanna R, et al. (1990). Tidal peritoneal dialysis with racemic or l-lactate solutions. Perit Dial Int 10:161–4
  • Ozturk D, Yonucu S, Yilmaz D, Unlu M. (2015). Influence of vascular normalization on interstitial flow and delivery of liposomes in tumors. Phys Med Biol 60:1477–96
  • Royer B, Kalbacher E, Onteniente S, et al. (2012). Intraperitoneal clearance as a potential biomarker of cisplatin after intraperitoneal perioperative chemotherapy: a population pharmacokinetic study. Br J Cancer 106:460–7
  • Shah D, Shin B, Veith J, et al. (2009). Use of an anti-vascular endothelial growth factor antibody in a pharmacokinetic strategy to increase the efficacy of intraperitoneal chemotherapy. J Pharmacol Exp Ther 329:580–91
  • Smith J, Ngo H, Martin M, Wolf J. (2005). An evaluation of cytotoxicity of the taxane and platinum agents combination treatment in a panel of human ovarian carcinoma cell lines. J Ggynecol Oncol 98:141–5
  • Stachowska-Pietka J, Waniewski J, Flessner M, Lindholm B. (2006). Distributed model of peritoneal fluid absorption. Am J Physiol Heart Circ Physiol 291:H1862–74
  • Soltani M, Chen P. (2011). Numerical modeling of fluid flow in solid tumors. PLoS One 6:e20344
  • Soltani M, Chen P. (2012). Effect of tumor shape and size on drug delivery to solid tumors. J Biol Eng 6:4
  • Tan W, Wang F, Lee T, Wang CH. (2003). Computer simulation of the delivery of etanidazole to brain tumor from PLGA wafers: Comparison between linear and double burst release systems. Biotechnol Bioeng 82:278–88
  • Teo C, Tan W, Lee T, Wang CH. (2005). Transient interstitial fluid flow in brain tumors: effect on drug delivery. Chem Eng Sci 60:4803–21
  • Wang CH, Li J. (1998). Three-dimensional simulation of IgG delivery to tumors. Chem Eng Sci 53:3579–600
  • Wang CH, Li J, Teo CS, Lee T. (1999). The delivery of BCNU to brain tumors. J Control Release 61:21–41
  • Winner K, Steinkamp M, Lee R, et al. (2016). Spatial modeling of drug delivery routes for treatment of disseminated ovarian cancer. Cancer Res 76:1320–34
  • Zeitlinger M, Derendorf H, Mouton J, et al. (2011). Protein binding: do we ever learn? Antimicrob Agents Chemother 55:3067–74
  • Zhan W, Xu X. (2013). A mathematical model for thermosensitive liposomal delivery of doxorubicin to solid tumour. J Drug Deliv 2013:172529