3,806
Views
50
CrossRef citations to date
0
Altmetric
Research Article

In vivo nose-to-brain delivery of the hydrophilic antiviral ribavirin by microparticle agglomerates

, , , , , , , , , & ORCID Icon show all
Pages 376-387 | Received 25 Oct 2017, Accepted 11 Jan 2018, Published online: 30 Jan 2018

References

  • Balducci AG, Cagnani S, Sonvico F, et al. (2014). Pure insulin highly respirable powders for inhalation. Eur J Pharm Sci 51:110–17.
  • Balducci AG, Magosso E, Colombo G, et al. (2013a). Agglomerated oral dosage forms of artemisinin/β-cyclodextrin spray-dried primary microparticles showing increased dissolution rate and bioavailability. AAPS PharmSciTech 14:911–18.
  • Balducci AG, Nastruzzi C, Colombo P, Sonvico F. (2013b). Antidiuretic effect of desmopressin chimera agglomerates by nasal administration in rats. Int J Pharm 440:154–60.
  • Barbieri S, Buttini F, Rossi A, et al. (2015). Ex vivo permeation of tamoxifen and its 4-OH metabolite through rat intestine from lecithin/chitosan nanoparticles. Int J Pharm 491:99–104.
  • Beaucourt S, Vignuzzi M. (2014). Ribavirin: a drug active against many viruses with multiple effects on virus replication and propagation. Molecular basis of ribavirin resistance. Curr Opin Virol 8:10–15.
  • Belotti S, Rossi A, Colombo P, et al. (2014). Spray dried amikacin powder for inhalation in cystic fibrosis patients: a quality by design approach for product construction. Int J Pharm 471:507–15.
  • Belotti S, Rossi A, Colombo P, et al. (2015). Spray-dried amikacin sulphate powder for inhalation in cystic fibrosis patients: the role of ethanol in particle formation. Eur J Pharm Biopharm 93:165–72.
  • Bortolotti F, Balducci AG, Sonvico F, et al. (2009). In vitro permeation of desmopressin across rabbit nasal mucosa from liquid nasal sprays: the enhancing effect of potassium sorbate. Eur J Pharm Sci 37:36–42.
  • Buttini F, Colombo P, Rossi A, et al. (2012). Particles and powders: tools of innovation for non-invasive drug administration. J Control Release 161:693–702.
  • Caramella C, Ferrari F, Bonferoni MC, et al. (2010). Chitosan and its derivatives as drug penetration enhancers. J Drug Deliv Sci Technol 20:5–13.
  • Casettari L, Illum L. (2014). Chitosan in nasal delivery systems for therapeutic drugs. J Control Release 190:189–200.
  • Casettari L, Vllasaliu D, Lam JKW, et al. (2012). Biomedical applications of amino acid-modified chitosans: a review. Biomaterials 33:7565–83.
  • Chan JGY, Chan H-K, Prestidge CA, et al. (2013). A novel dry powder inhalable formulation incorporating three first-line anti-tubercular antibiotics. Eur J Pharm Biopharm 83:285–92.
  • Chen C, Han D, Cai C, Tang X. (2010). An overview of liposome lyophilization and its future potential. J Control Release 142:299–311.
  • Chen KH, Di Sabatino M, Albertini B, et al. (2013). The effect of polymer coatings on physicochemical properties of spray-dried liposomes for nasal delivery of BSA. Eur J Pharm Sci 50:312–22.
  • Colombo G, Bortolotti F, Chiapponi V, et al. (2016). Nasal powders of thalidomide for local treatment of nose bleeding in persons affected by hereditary hemorrhagic telangiectasia. Int J Pharm 514:229–37.
  • Colombo G, Lorenzini L, Zironi E, et al. (2011). Brain distribution of ribavirin after intranasal administration. Antiviral Res 92:408–14.
  • Comfort C, Garrastazu G, Pozzoli M, Sonvico F. (2015). Opportunities and challenges for the nasal administration of nanoemulsions. Curr Top Med Chem 15:356–68.
  • Costantino HR, Illum L, Brandt G, et al. (2007). Intranasal delivery: physicochemical and therapeutic aspects. Int J Pharm 337:1–24.
  • Dal Pozzo F, Galligioni V, Vaccari F, et al. (2010). Antiviral efficacy of EICAR against canine distemper virus (CDV) in vitro. Res Vet Sci 88:339–44.
  • Dalpiaz A, Gavini E, Colombo G, et al. (2008). Brain uptake of an anti-ischemic agent by nasal administration of microparticles. J Pharm Sci 97:4889–903.
  • Deli MA. (2009). Potential use of tight junction modulators to reversibly open membranous barriers and improve drug delivery. Biochim Biophys Acta 1788:892–910.
  • Dhuria SV. (2010). Intranasal delivery to the central nervous system: mechanisms and experimental considerations. J Pharm Sci 99:1654–73.
  • Dyer AM, Hinchcliffe M, Watts P, et al. (2002). Nasal delivery of insulin using novel chitosan based formulations: a comparative study in two animal models between simple chitosan formulations and chitosan nanoparticles. Pharm Res 19:998–1008.
  • Elia G, Belloli C, Cirone F, et al. (2008). In vitro efficacy of ribavirin against canine distemper virus. Antiviral Res 77:108–13.
  • Farkas A, Szatmári E, Orbók A, et al. (2005). Hyperosmotic mannitol induces Src kinase-dependent phosphorylation of beta-catenin in cerebral endothelial cells. J Neurosci Res 80:855–61.
  • Fransén N, Bredenberg S, Björk E. (2009). Clinical study shows improved absorption of desmopressin with novel formulation. Pharm Res 26:1618–25.
  • Garg RK. (2008). Subacute sclerosing panencephalitis. J Neurol 255:1861–71.
  • Gavini E, Rassu G, Ferraro L, et al. (2013). Influence of polymeric microcarriers on the in vivo intranasal uptake of an anti-migraine drug for brain targeting. Eur J Pharm Biopharm 83:174–83.
  • Grancher N, Kedzierewicz F, Venard V, et al. (2005). Physicochemical study of ribavirin complexes with α-, β- and γ-cyclodextrins. J Incl Phenom Macrocycl Chem 51:149–57.
  • Hanson LR, Frey WH. (2008). Intranasal delivery bypasses the blood– brain barrier to target therapeutic agents to the central nervous system and treat neurodegenerative disease. BMC Neurosci 9 Suppl 3:S5.
  • Hirsh AJ. (2002). Altering airway surface liquid volume: inhalation therapy with amiloride and hyperosmotic agents. Adv Drug Deliv Rev 54:1445–62.
  • Howard CR, Fletcher NF. (2012). Emerging virus diseases: can we ever expect the unexpected? Emerg Microbes Infect 1:e46.
  • Illum L. (2007). Nanoparticulate systems for nasal delivery of drugs: a real improvement over simple systems? J Pharm Sci 96:473–83.
  • Illum L. (2012). Nasal drug delivery – recent developments and future prospects. J Control Release 161:254–63.
  • Illum L, Davis SS, Pawula M, et al. (1996). Nasal administration of morphine-6-glucuronide in sheep – a pharmacokinetic study. Biopharm Drug Dispos 17:717–24.
  • Illum L, Watts P, Fisher AN, et al. (2002). Intranasal delivery of morphine. J Pharmacol Exp Ther 301:391–400.
  • Jeulin H, Grancher N, Kedzierewicz F, et al. (2008). In vivo antiviral activity of ribavirin/alpha-cyclodextrin complex: evaluation on experimental measles virus encephalitis in mice. Int J Pharm 357:148–53.
  • Jeulin H, Venard V, Carapito D, et al. (2009). Effective ribavirin concentration in mice brain using cyclodextrin as a drug carrier: evaluation in a measles encephalitis model. Antiviral Res 81:261–6.
  • Kulkarni JA, Avachat AM. (2017). Pharmacodynamic and pharmacokinetic investigation of cyclodextrin-mediated asenapine maleate in situ nasal gel for improved bioavailability. Drug Dev Ind Pharm 43:234–45.
  • Lachenmann MJ, Fernandez-Larsson R, Patterson JL. (1990). Stabilized ribavirin diphosphate analogs inhibit the vesicular stomatitis virus (Indiana) in vitro transcription reaction. Arch Virol Suppl 1:101–8.
  • Landis MS, Boyden T, Pegg S. (2012). Nasal-to-CNS drug delivery: where are we now and where are we heading? An industrial perspective. Ther Deliv 3:195–208.
  • Li L, Avery R, Budev M, et al. (2012). Oral versus inhaled ribavirin therapy for respiratory syncytial virus infection after lung transplantation. J Heart Lung Transplant 31:839–44.
  • Luppi B, Bigucci F, Cerchiara T, Zecchi V. (2010). Chitosan-based hydrogels for nasal drug delivery: from inserts to nanoparticles. Expert Opin Drug Deliv 7:811–28.
  • Mahajan HS, Mahajan MS, Nerkar PP, Agrawal A. (2014). Nanoemulsion-based intranasal drug delivery system of saquinavir mesylate for brain targeting. Drug Deliv 21:148–54.
  • Merkus F, Verhoef J, Marttin E, et al. (1999). Cyclodextrins in nasal drug delivery. Adv Drug Deliv Rev 36:41–57.
  • Pozzoli M, Rogueda P, Zhu B, et al. (2016). Dry powder nasal drug delivery: challenges, opportunities and a study of the commercial Teijin Puvlizer Rhinocort device and formulation. Drug Dev Ind Pharm 42:1660–8.
  • Pozzoli M, Traini D, Young PM, et al. (2017). Development of a Soluplus budesonide freeze-dried powder for nasal drug delivery. Drug Dev Ind Pharm 43:1510–18.
  • Rassu G, Soddu E, Cossu M, et al. (2015). Solid microparticles based on chitosan or methyl-β-cyclodextrin: a first formulative approach to increase the nose-to-brain transport of deferoxamine mesylate. J Control Release 201:68–77.
  • Russo P, Buttini F, Sonvico F, et al. (2004). Chimeral agglomerates of microparticles for the administration of caffeine nasal powders. J Drug Deliv Sci Technol 14:449–54.
  • Russo P, Sacchetti C, Pasquali I, et al. (2006). Primary microparticles and agglomerates of morphine for nasal insufflation. J Pharm Sci 95:2553–61.
  • Sacchetti C, Artusi M, Santi P, Colombo P. (2002). Caffeine microparticles for nasal administration obtained by spray drying. Int J Pharm 242:335–9.
  • Safdar A, Shelburne SA, Evans SE, Dickey BF. (2009). Inhaled therapeutics for prevention and treatment of pneumonia. Expert Opin Drug Saf 8:435–49.
  • Schindelin J, Arganda-Carreras I, Frise E, et al. (2012). Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–82.
  • Serralheiro A, Alves G, Fortuna A, Falcão A. (2015). Direct nose-to-brain delivery of lamotrigine following intranasal administration to mice. Int J Pharm 490:39–46.
  • Tanaka A, Furubayashi T, Tomisaki M, et al. (2017). Nasal drug absorption from powder formulations: the effect of three types of hydroxypropyl cellulose (HPC). Eur J Pharm Sci 96:284–9.
  • Tiozzo Fasiolo L, Manniello MD, Tratta E, et al. (2018). Opportunity and challenges of nasal powders: drug formulation and delivery. Eur J Pharm Sci. In press. doi: 10.1016/j.ejps.2017.09.027
  • Tomoda A, Nomura K, Shiraishi S, et al. (2003). Trial of intraventricular ribavirin therapy for subacute sclerosing panencephalitis in Japan. Brain Dev 25:514–17.
  • Tsapis N, Bennett D, Jackson B, et al. (2002). Trojan particles: large porous carriers of nanoparticles for drug delivery. Proc Natl Acad Sci USA 99:12001–5.
  • Tyler KL. (2009). Emerging viral infections of the central nervous system: part 1. Arch Neurol 66:939–48.
  • Vasa DM, Wildfong PLD. (2017). Solid-state transformations of ribavirin as a result of high-shear mechanical processing. Int J Pharm 524:339–50.
  • Vehring R. (2008). Pharmaceutical particle engineering via spray drying. Pharm Res 25:999–1022.
  • Wang X, Zheng C, Wu Z, et al. (2009). Chitosan-NAC nanoparticles as a vehicle for nasal absorption enhancement of insulin. J Biomed Mater Res Part B: Appl Biomater 88:150–61.
  • Wong HL, Wu XY, Bendayan R. (2012). Nanotechnological advances for the delivery of CNS therapeutics. Adv Drug Deliv Rev 64:686–700.
  • Xu L-M, Zhang Q-X, Zhou Y, et al. (2012). Engineering drug ultrafine particles of beclomethasone dipropionate for dry powder inhalation. Int J Pharm 436:1–9.
  • Young PM, Crapper J, Philips G, et al. (2014). Overcoming dose limitations using the Orbital® multi-breath dry powder inhaler. J Aerosol Med Pulm Drug Deliv 27:138–47.
  • Zironi E, Gazzotti T, Lugoboni B, et al. (2011). Development of a rapid LC-MS/MS method for ribavirin determination in rat brain. J Pharm Biomed Anal 54:889–92.