3,576
Views
27
CrossRef citations to date
0
Altmetric
Research Article

Targeted delivery of doxorubicin by CSA-binding nanoparticles for choriocarcinoma treatment

, , , , , , , , , , & ORCID Icon show all
Pages 461-471 | Received 20 Dec 2017, Accepted 29 Jan 2018, Published online: 09 Feb 2018

References

  • Alexis F, Pridgen E, Molnar LK, Farokhzad OC. (2008). Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol Pharm 5:505–15.
  • Cheung AN, Zhang HJ, Xue WC, Siu MK. (2009). Pathogenesis of choriocarcinoma: clinical, genetic and stem cell perspectives. Future Oncol 5:217–31.
  • Chisholm EJ, Vassaux G, Martin-Duque P, et al. (2009). Cancer-specific transgene expression mediated by systemic injection of nanoparticles. Cancer Res 69:2655–62.
  • Clausen TM, Christoffersen S, Dahlbäck M, et al. (2012). Structural and functional insight into how the Plasmodium falciparum VAR2CSA protein mediates binding to chondroitin sulfate A in placental malaria. J Biol Chem 287:23332–45.
  • Cui T, Liang JJ, Chen H, et al. (2017). Performance of doxorubicin-conjugated gold nanoparticles: regulation of drug location. ACS Appl Mater Interfaces 9:8569–80.
  • Dahlbäck M, Jørgensen LM, Nielsen MA, et al. (2011). The chondroitin sulfate A-binding site of the VAR2CSA protein involves multiple N-terminal domains. J Biol Chem 286:15908–17.
  • Dong Y, Feng SS. (2004). Methoxy poly(ethylene glycol)–poly(lactide) (MPEG-PLA) nanoparticles for controlled delivery of anticancer drugs. Biomaterials 25:2843–9.
  • Duffy MF, Maier AG, Byrne TJ, et al. (2006). VAR2CSA is the principal ligand for chondroitin sulfate A in two allogeneic isolates of Plasmodium falciparum. Mol Biochem Parasitol 148:117–24.
  • Fan X, Rai A, Kambham N, et al. (2014). Endometrial VEGF induces placental sFLT1 and leads to pregnancy complications. J Clin Invest 124:4941–52.
  • Fan X, Ren P, Dhal S, et al. (2011). Noninvasive monitoring of placenta-specific transgene expression by bioluminescence imaging. PLoS One 6:e16348.
  • Fang RH, Aryal S, Hu C-MJ, Zhang L. (2010). Quick synthesis of lipid–polymer hybrid nanoparticles with low polydispersity using a single-step sonication method. Langmuir 26:16958–62.
  • Ferrari M. (2005). Cancer nanotechnology: opportunities and challenges. Nat Rev Cancer 5:161–71.
  • Fried M, Duffy PE. (1996). Adherence of Plasmodium falciparum to chondroitin sulfate A in the human placenta. Science 272:1502–4.
  • Frost AS, Sherman JH, Rezaei K, et al. (2017). Choriocarcinoma with brain, lung and vaginal metastases successfully treated without brain radiation or intrathecal chemotherapy: a case report. Gynecol Oncol Rep 20:97–9.
  • Gamain B, Trimnell AR, Scheidig C, et al. (2005). Identification of multiple chondroitin sulfate A (CSA)-binding domains in the var2CSA gene transcribed in CSA-binding parasites. J Infect Dis 191:1010–13.
  • Govender T, Stolnik S, Garnett MC, et al. (1999). PLGA nanoparticles prepared by nanoprecipitation: drug loading and release studies of a water soluble drug. J Control Release 57:171–85.
  • Guo J, Gao X, Su L, et al. (2011). Aptamer-functionalized PEG-PLGA nanoparticles for enhanced anti-glioma drug delivery. Biomaterials 32:8010–20.
  • Guo S, Huang L. (2014). Nanoparticles containing insoluble drug for cancer therapy. Biotechnol Adv 32:778–88.
  • Kohorn E. (2001). The new FIGO 2000 staging and risk factor scoring system for gestational trophoblastic disease: description and critical assessment. Int J Gynecol Cancer 11:73–7.
  • Lim W, Yang C, Park S, et al. (2017). Inhibitory effects of quercetin on progression of human choriocarcinoma cells are mediated through PI3K/AKT and MAPK signal transduction cascades. J Cell Physiol 232:1428–40.
  • Lin WJ, Juang LW, Lin CC. (2003). Stability and release performance of a series of pegylated copolymeric micelles. Pharm Res 20:668–73.
  • Liu J, Lee H, Allen C. (2006). Formulation of drugs in block copolymer micelles: drug loading and release. Curr Pharm Des 12:4685–701.
  • Lurain JR. (2011). Gestational trophoblastic disease II: classification and management of gestational trophoblastic neoplasia. Am J Obstetr Gynecol 204:11–18.
  • Manzoor AA, Lindner LH, Landon CD, et al. (2012). Overcoming limitations in nanoparticle drug delivery: triggered, intravascular release to improve drug penetration into tumors. Cancer Res 72:5566–75.
  • Nadhan R, Vaman JV, Nirmala C, et al. (2017). Insights into dovetailing GTD and cancers. Crit Rev Oncol/Hematol 114:77–90.
  • Peer D, Karp JM, Hong S, et al. (2007). Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol 2:751–60.
  • Resende M, Nielsen MA, Dahlbäck M, et al. (2008). Identification of glycosaminoglycan binding regions in the Plasmodium falciparum encoded placental sequestration ligand, VAR2CSA. Malar J 7:104.
  • Riehemann K, Schneider SW, Luger TA, et al. (2009). Nanomedicine—challenge and perspectives. Angew Chem Int Ed 48:872–97.
  • Salanti A, Clausen TM, Agerbaek M, et al. (2015). Targeting human cancer by a glycosaminoglycan binding malaria protein. Cancer Cell 28:500–14.
  • Salanti A, Dahlbäck M, Turner L, et al. (2004). Evidence for the involvement of VAR2CSA in pregnancy-associated malaria. J Exp Med 200:1197–203.
  • Salanti A, Staalsoe T, Lavstsen T, et al. (2003). Selective upregulation of a single distinctly structured var gene in chondroitin sulphate A‐adhering Plasmodium falciparum involved in pregnancy‐associated malaria. Mol Microbiol 49:179–91.
  • Seckl MJ, Sebire NJ, Berkowitz RS. (2010). Gestational trophoblastic disease. Lancet 376:717–29.
  • Seckl MJ, Sebire NJ, Fisher RA, et al. (2013). Gestational trophoblastic disease: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 24 Suppl.6:vi39–50.
  • Seiler R, Oo HZ, Tortora D, et al. (2017). An oncofetal glycosaminoglycan modification provides therapeutic access to cisplatin-resistant bladder cancer. Eur Urol 72:142–50.
  • Shih I-M. (2007). Gestational trophoblastic neoplasia—pathogenesis and potential therapeutic targets. Lancet Oncol 8:642–50.
  • Taşçı T, Reyen I, Kimyon G, et al. (2016). EMA/CO combination chemotherapy in gestational trophoblastic neoplasia: update of our results. Gynecol Obstetr Reprod Med 21:86-92.
  • Wen L, Tan Y, Dai S, et al. (2017). VEGF-mediated tight junctions pathological fenestration enhances doxorubicin-loaded glycolipid-like nanoparticles traversing BBB for glioblastoma-targeting therapy. Drug Deliv 24:1843–55.
  • Zhang B, Sun X, Mei H, et al. (2013). LDLR-mediated peptide-22-conjugated nanoparticles for dual-targeting therapy of brain glioma. Biomaterials 34:9171–82.
  • Zhang L, Chan JM, Gu FX, et al. (2008). Self-assembled lipid–polymer hybrid nanoparticles: a robust drug delivery platform. ACS Nano 2:1696–702.
  • Zhao F, Zhao Y, Liu Y, et al. (2011). Cellular uptake, intracellular trafficking, and cytotoxicity of nanomaterials. Small 7:1322–37.
  • Zhao P, Zheng M, Luo Z, et al. (2016). Oxygen nanocarrier for combined cancer therapy: oxygen-boosted ATP‐responsive chemotherapy with amplified ROS lethality. Adv Healthcare Mater 5:2161–7.
  • Zhao P, Zheng M, Yue C, et al. (2014). Improving drug accumulation and photothermal efficacy in tumor depending on size of ICG loaded lipid–polymer nanoparticles. Biomaterials 35:6037–46.
  • Zheng M, Yue C, Ma Y, et al. (2013). Single-step assembly of DOX/ICG loaded lipid–polymer nanoparticles for highly effective chemo-photothermal combination therapy. ACS Nano 7:2056–67.