5,281
Views
51
CrossRef citations to date
0
Altmetric
Research Article

Surface modification of doxorubicin-loaded nanoparticles based on polydopamine with pH-sensitive property for tumor targeting therapy

ORCID Icon, , , , , & show all
Pages 564-575 | Received 22 Dec 2017, Accepted 11 Feb 2018, Published online: 19 Feb 2018

References

  • Ai J, Liu B, Liu W. (2017). Folic acid-tagged titanium dioxide nanoparticles for enhanced anticancer effect in osteosarcoma cells. Mater Sci Eng C Mater Biol Appl 76:1181–7.
  • Amin M, Mansourian M, Koning GA, et al. (2015). Development of a novel cyclic RGD peptide for multiple targeting approaches of liposomes to tumor region. J Control Release 220:308–15.
  • Batul R, Tamanna T, Khaliq A, Yu A. (2017). Recent progress on the biomedical applications of polydopamine nanostructures. Biomater Sci 5:1204–29.
  • Cheng W, Liang C, Xu L, et al. (2017a). TPGS-functionalized polydopamine-modified mesoporous silica as drug nanocarriers for enhanced lung cancer chemotherapy against multidrug resistance. Small 13:1–12.
  • Cheng W, Nie J, Xu L, et al. (2017b). pH-sensitive delivery vehicle based on folic acid-conjugated polydopamine-modified mesoporous silica nanoparticles for targeted cancer therapy. ACS Appl Mater Interfaces 9:18462–73.
  • Crider KS, Yang TP, Berry RJ, Bailey LB. (2012). Folate and DNA methylation: a review of molecular mechanisms and the evidence for folate’s role. Adv Nutr 3:21–38.
  • Czeczuga-Semeniuk E, Wołczyński S, Dabrowska M, et al. (2004). The effect of doxorubicin and retinoids on proliferation, necrosis and apoptosis in MCF-7 breast cancer cells. Folia Histochem Cytobiol 42:221–7.
  • Dasari S, Wudayagiri R, Valluru L. (2015). Cervical cancer: biomarkers for diagnosis and treatment. Clinica Chimica Acta 445:7–11.
  • Ding Y, Su S, Zhang R, et al. (2017). Precision combination therapy for triple negative breast cancer via biomimetic polydopamine polymer core-shell nanostructures. Biomaterials 113:243–52.
  • Fan H, Yu X, Liu Y, et al. (2015). Folic acid–polydopamine nanofibers show enhanced ordered-stacking via π–π interactions. Soft Matter 11:4621–9.
  • Fan NC, Cheng FY, Ho JAA, Yeh CS. (2012). Photocontrolled targeted drug delivery: photocaged biologically active folic acid as a light-responsive tumor-targeting molecule. Angew Chem Int Ed 51:8806–10.
  • Fang Z, Sun Y, Xiao H, et al. (2017). Targeted osteosarcoma chemotherapy using RGD peptide-installed doxorubicin-loaded biodegradable polymeric micelle. Biomed Pharmacother 85:160–8.
  • Feng J, Fan H, Zha DA, et al. (2016). Characterizations of the formation of polydopamine-coated halloysite nanotubes in various pH environments. Langmuir 32:10377–86.
  • Garanger E, Boturyn D, Dumy P. (2007). Tumor targeting with RGD peptide ligands-design of new molecular conjugates for imaging and therapy of cancers. Anticancer Agents Med Chem 7:552–8.
  • Goodman A. (2015). HPV testing as a screen for cervical cancer. BMJ 350:h2372.
  • Haeshin L, Shara M, Dellatore William M, Miller PBM. (2007). Mussel-inspired surface chemistry for multifunctional coatings. Science 318:426–31.
  • Haller S, Reber J, Brandt S, et al. (2015). Folate receptor-targeted radionuclide therapy: preclinical investigation of anti-tumor effects and potential radionephropathy. Nucl Med Biol 42:770–9.
  • Han MH, Li ZT, Bi DD, et al. (2016). Novel folate-targeted docetaxel-loaded nanoparticles for tumour targeting: in vitro and in vivo evaluation. RSC Adv 6:64306–14.
  • Hong D, Lee H, Kim BJ, et al. (2015). A degradable polydopamine coating based on disulfide-exchange reaction. Nanoscale 7:20149–54.
  • Hong J, Li Y, Xiao Y, et al. (2016). Annonaceous acetogenins (ACGs) nanosuspensions based on a self-assembly stabilizer and the significantly improved anti-tumor efficacy. Colloids Surf B Biointerfaces 145:319–27.
  • Hong J, Sun Z, Li Y, et al. (2017). Folate-modified Annonaceous acetogenins nanosuspensions and their improved antitumor efficacy. Int J Nanomedicine 12:5053–67.
  • Huang R, Liu X, Ye H, et al. (2015). Conjugation of hyaluronic acid onto surfaces via the interfacial polymerization of dopamine to prevent protein adsorption. Langmuir 31:12061–70.
  • Ji X, Yi B, Xu Y, et al. (2017). A novel fluorescent biosensor for adenosine triphosphate detection based on the polydopamine nanospheres integrating with enzymatic recycling amplification. Talanta 169:8–12.
  • Kim SH, In I, Park SY. (2017). PH-responsive NIR-absorbing fluorescent polydopamine with hyaluronic acid for dual targeting and synergistic effects of photothermal and chemotherapy. Biomacromolecules. 18:1825–35.
  • Kluza E, Jacobs I, Hectors SJCG, et al. (2012). Dual-targeting of αvβ3 and galectin-1 improves the specificity of paramagnetic/fluorescent liposomes to tumor endothelium in vivo. J Control Release 158:207–14.
  • Lammers T, Hennink WE, Storm G. (2008). Tumour-targeted nanomedicines: principles and practice. Br J Cancer 99:392–7.
  • Li H, Jia Y, Feng X, Li J. (2017a). Facile fabrication of robust polydopamine microcapsules for insulin delivery. J Colloid Interface Sci 487:12–9.
  • Li WQ, Wang Z, Hao S, et al. (2017b). Mitochondria-targeting polydopamine nanoparticles to deliver doxorubicin for overcoming drug resistance. ACS Appl Mater Interfaces 9:16793–802.
  • Liu M, Zeng G, Wang K, et al. (2016). Recent developments in polydopamine: an emerging soft matter for surface modification and biomedical applications. Nanoscale 8:16819–40.
  • Liu X, Wang X, Zhang X, et al. (2012). C57BL/6 mice are more appropriate than BALB/C mice in inducing dilated cardiomyopathy with short-term doxorubicin treatment. Acta Cardiologica Sinica 28:236–40.
  • Loomis K, McNeeley K, Bellamkonda RV. (2011). Nanoparticles with targeting, triggered release, and imaging functionality for cancer applications. Soft Matter 7:839–56.
  • Mallick S, Choi JS. (2014). Liposomes: versatile and biocompatible nanovesicles for efficient biomolecules delivery. J Nanosci Nanotech 14:755–65.
  • Meng F, Zhong Y, Cheng R, et al. (2014). pH-sensitive polymeric nanoparticles for tumor-targeting doxorubicin delivery: concept and recent advances. Nanomedicine 9:487–99.
  • Mu X, Zhang F, Kong C, et al. (2017). EGFR-targeted delivery of DOX-loaded Fe3O4@ polydopamine multifunctional nanocomposites for MRI and antitumor chemo-photothermal therapy. Int J Nanomedicine 12:2899–911.
  • Park J, Brust TF, Lee HJ, et al. (2014). Polydopamine-based simple and versatile surface modification of polymeric nano drug carriers. ACS Nano 8:3347–56.
  • Pranatharthiharan S, Patel MD, Malshe VC, Devarajan PV. (2016). Polyethylene sebacate doxorubicin nanoparticles: role of carbohydrate anchoring on in vitro and in vivo anticancer efficacy. Drug Deliv 23:2980–9.
  • Shaikh AB, Li F, Li M, et al. (2016). Present advances and future perspectives of molecular targeted therapy for osteosarcoma. Int J Mol Sci 17:506.
  • Sheng Y, Tao W. (2016). Robust aptamer-polydopamine-functionalized M-PLGA-TPGS nanoparticles for targeted delivery of docetaxel and enhanced cervical cancer therapy. Int J Nanomed 11:2953.
  • Singal PK, Deally CMR, Weinberg LE. (1987). Subcellular effects of adriamycin in the heart: a concise review. J Mol Cell Cardiol 19:817–28.
  • Šírová M, Strohalm J, Chytil P, et al. (2017). The structure of polymer carriers controls the efficacy of the experimental combination treatment of tumors with HPMA copolymer conjugates carrying doxorubicin and docetaxel. J Control Release 246:1–11.
  • Tao W, Zeng X, Wu J, et al. (2016). Polydopamine-based surface modification of novel nanoparticle-aptamer bioconjugates for in vivo breast cancer targeting and enhanced therapeutic effects. Theranostics 6:470–84.
  • Wang F, Chen L, Zhang R, et al. (2014). RGD peptide conjugated liposomal drug delivery system for enhance therapeutic efficacy in treating bone metastasis from prostate cancer. J Control Release 196:222–33.
  • Wang F, Pauletti GM, Wang J, et al. (2013). Dual surface-functionalized janus nanocomposites of polystyrene/Fe 3O4@SiO2 for simultaneous tumor cell targeting and stimulus-induced drug release. Adv Mater 25:3485–9.
  • Wang H, Zhu W, Huang Y, et al. (2016). Facile encapsulation of hydroxycamptothecin nanocrystals into zein-based nanocomplexes for active targeting in drug delivery and cell imaging. Acta Biomater 61:88–100.
  • Wang J, Bhattacharyya J, Mastria E, Chilkoti A. (2017). A quantitative study of the intracellular fate of pH-responsive doxorubicin-polypeptide nanoparticles. J Control Release 260:100–10.
  • Wang J, Ma W, Guo Q, et al. (2016). The effect of dual-functional hyaluronic acid-vitamin E succinate micelles on targeting delivery of doxorubicin. Int J Nanomedicine 11:5851–70.
  • Wohlfart S, Khalansky AS, Gelperina S, et al. (2011). Efficient chemotherapy of rat glioblastoma using doxorubicin-loaded PLGA nanoparticles with different stabilizers. PLoS One 6:e19121.
  • Xing Y, Zhang J, Chen F, et al. (2017). Mesoporous polydopamine nanoparticles with co-delivery function for overcoming multidrug resistance via synergistic chemo-photothermal therapy. Nanoscale 9:8781–90.
  • Xiong W, Peng L, Chen H, Li Q. (2015). Surface modification of MPEG-b-PCL-based nanoparticles via oxidative self-polymerization of dopamine for malignant melanoma therapy. Int J Nanomedicine 10:2985–96.
  • Xu G, Sheng Y, Tao W. (2016). Robust aptamer–polydopamine-functionalized M-PLGA–TPGS nanoparticles for targeted delivery of docetaxel and enhanced cervical cancer therapy. Int J Nanomedicine 11:2953–65.
  • Yahuafai J, Asai T, Nakamura G, et al. (2014). Suppression in mice of immunosurveillance against PEGylated liposomes by encapsulated doxorubicin. J Control Release 192:167–73.
  • Yang R, Kolb EA, Qin J, et al. (2007). The folate receptor α is frequently overexpressed in osteosarcoma samples and plays a role in the uptake of the physiologic substrate 5-methyltetrahydrofolate. Clin Cancer Res 13:2557–67.
  • Zavareh S, Mahdi M, Erfanian S, Hashemi-Moghaddam H. (2016). Synthesis of polydopamine as a new and biocompatible coating of magnetic nanoparticles for delivery of doxorubicin in mouse breast adenocarcinoma. Cancer Chemother Pharmacol 78:1073–84.
  • Zhang C, Lv Y, Qiu WZ, et al. (2017). Polydopamine coatings with nanopores for versatile molecular separation. ACS Appl Mater Interfaces 9:14437–44.
  • Zhang J, Deng D, Zhu H, et al. (2012). Folate-conjugated thermo-responsive micelles for tumor targeting. J Biomed Mater Res A 100:3134–42.
  • Zhang R, Su S, Hu K, et al. (2015). Smart micelle@polydopamine core–shell nanoparticles for highly effective chemo–photothermal combination therapy. Nanoscale 7:19722–31.
  • Zhao MX, Li J, Gao X. (2017). Gradient coating of polydopamine via CDR. Langmuir 33:6727–31.
  • Zhong Y, Meng F, Deng C, et al. (2017a). Targeted inhibition of human hematological cancers in vivo by doxorubicin encapsulated in smart lipoic acid-crosslinked hyaluronic acid nanoparticles. Drug Deliv 24:1482–90.
  • Zhong Z, Yao X, Gao X, Jia L. (2017b). Polydopamine-immobilized polypropylene microfuge tube as a pH-responsive platform for capture/release of DNA from foodborne pathogens. Anal Biochem 534:14–8.
  • Zong W, Hu Y, Su Y, et al. (2016). Polydopamine-coated liposomes as pH-sensitive anticancer drug carriers. J Microencapsul 33:257–62.