2,103
Views
24
CrossRef citations to date
0
Altmetric
Research Article

Designing multifunctional cancer-targeted nanosystem for magnetic resonance molecular imaging-guided theranostics of lung cancer

, , , , , , , & show all
Pages 1811-1825 | Received 13 May 2018, Accepted 25 Jun 2018, Published online: 22 Nov 2018

References

  • Bozkurt M, Doganay S, Kantarci M, et al. (2011). Comparison of peritoneal tumor imaging using conventional MR imaging and diffusion-weighted MR imaging with different b values. Eur J Radiol 80:224–8.
  • Campbell IG, Jones TA, Foulkes WD, Trowsdale J. (1991). Folate-binding protein is a marker for ovarian cancer. Cancer Res 51:5329–38.
  • Chen T, Wong Y-S. (2009a). Selenocystine induces caspase-independent apoptosis in MCF-7 human breast carcinoma cells with involvement of p53 phosphorylation and reactive oxygen species generation. Int J Biochem Cell Biol 41:666–76.
  • Chen T, Wong Y-S. (2009b). Selenocystine induces reactive oxygen species-mediated apoptosis in human cancer cells. Biomed Pharmacother 63:105–13.
  • Chen X, Gambhir SS, Cheon J. (2011). Theranostic nanomedicine. Acc Chem Res 44:841.
  • Chiaradia M, Baranes L, Van Nhieu JT, et al. (2014). Intravoxel incoherent motion (IVIM) MR imaging of colorectal liver metastases: are we only looking at tumor necrosis? J Magn Reson Imaging 39:317–25.
  • Chu M, Shao Y, Peng J, et al. (2013). Near-infrared laser light mediated cancer therapy by photothermal effect of Fe3O4 magnetic nanoparticles. Biomaterials 34:4078–88.
  • Cui Y, Zhang C, Li X, et al. (2015). Intravoxel incoherent motion diffusion-weighted magnetic resonance imaging for monitoring the early response to ZD6474 from nasopharyngeal carcinoma in nude mouse. Sci Rep 5:16389.
  • Dvorak HF, Brown LF, Detmar M, Dvorak AM. (1995). Vascular permeability factor/vascular endothelial growth factor, microvascular hyperpermeability, and angiogenesis. Am J Pathol 146:1029–39.
  • Fan C, Chen J, Wang Y, et al. (2013). Selenocystine potentiates cancer cell apoptosis induced by 5-fluorouracil by triggering reactive oxygen species-mediated DNA damage and inactivation of the ERK pathway. Free Radic Biol Med 65:305–16.
  • Fan X, Krieg S, Kuo CJ, et al. (2008). VEGF blockade inhibits angiogenesis and reepithelialization of endometrium. FASEB J 22:3571–80.
  • Fang C, Kievit FM, Veiseh O, et al. (2012). Fabrication of magnetic nanoparticles with controllable drug loading and release through a simple assembly approach. J Control Release 162:233–41.
  • Franklin WA, Waintrub M, Edwards D, et al. (1994). New anti-lung-cancer antibody cluster 12 reacts with human folate receptors present on adenocarcinoma. Int J Cancer 57:89–95.
  • He L, Lai H, Chen T. (2015). Dual-function nanosystem for synergetic cancer chemo-/radiotherapy through ROS-mediated signaling pathways. Biomaterials 51:30–42.
  • Huang Y, He L, Liu W, et al. (2013). Selective cellular uptake and induction of apoptosis of cancer-targeted selenium nanoparticles. Biomaterials 34:7106–16.
  • İdilman İS, Haliloğlu M, Gümrük F, Karçaaltıncaba M. (2016). The feasibility of magnetic resonance imaging for quantification of liver, pancreas, spleen, vertebral bone marrow, and renal cortex R2*and proton density fat fraction in transfusion-related iron overload. TJH 33:21–7.
  • Jafari A, Salouti M, Shayesteh SF, et al. (2015). Synthesis and characterization of Bombesin-superparamagnetic iron oxide nanoparticles as a targeted contrast agent for imaging of breast cancer using MRI. Nanotechnology 26:075101.
  • Joo I, Lee JM, Grimm R, et al. (2016). Monitoring vascular disrupting therapy in a rabbit liver tumor model: relationship between tumor perfusion parameters at IVIM diffusion-weighted MR imaging and those at dynamic contrast-enhanced MR imaging. Radiology 278:104–13.
  • Joo I, Lee JM, Han JK, Choi BI. (2014). Intravoxel incoherent motion diffusion-weighted MR imaging for monitoring the therapeutic efficacy of the vascular disrupting agent CKD-516 in rabbit VX2 liver tumors. Radiology 272:417–26.
  • Kilarkaje N, Al-Hussaini H, Al-Bader MM. (2014). Diabetes-induced DNA damage and apoptosis are associated with poly (ADP ribose) polymerase 1 inhibition in the rat testis. Eur J Pharmacol 737:29–40.
  • Kim D-H, Zeng H, Ng TC, Brazel CS. (2009). T-1 and T-2 relaxivities of succimer-coated MFe23 + O4 (M = Mn2+, Fe2+ and Co2+) inverse spinel ferrites for potential use as phase- contrast agents in medical MRI. J Magn Magn Mater 321:3899–904.
  • Kim HS, Oh SY, Joo HJ, et al. (2010). The effects of clinically used MRI contrast agents on the biological properties of human mesenchymal stem cells. NMR Biomed 23:514–22.
  • Kuhlpeter R, Dahnke H, Matuszewski L, et al. (2007). R2 and R2*mapping for sensing cell-bound superparamagnetic nanoparticles: in vitro and murine in vivo testing. Radiology 245:449–57.
  • Kwon S, Singh RK, Kim T-H, et al. (2014). Luminescent mesoporous nanoreservoirs for the effective loading and intracellular delivery of therapeutic drugs. Acta Biomater 10:1431–42.
  • Lam MK, Oerlemans C, Froeling M, et al. (2016). DCE-MRI and IVIM-MRI of rabbit Vx2 tumors treated with MR-HIFU-induced mild hyperthermia. J Ther Ultrasound 4:9.
  • Li H, Yan K, Shang Y, et al. (2015). Folate-bovine serum albumin functionalized polymeric micelles loaded with superparamagnetic iron oxide nanoparticles for tumor targeting and magnetic resonance imaging. Acta Biomater 15:117–26.
  • Li J, Zheng L, Cai H, et al. (2013). Polyethyleneimine-mediated synthesis of folic acid-targeted iron oxide nanoparticles for in vivo tumor MR imaging. Biomaterials 34:8382–92.
  • Li L, Gao F, Jiang W, et al. (2016a). Folic acid-conjugated superparamagnetic iron oxide nanoparticles for tumor-targeting MR imaging. Drug Deliv 23:1726–33.
  • Li Q, Liu C, Li H. (2016b). Induction of endogenous reactive oxygen species in mitochondria by fullerene-based photodynamic therapy. J Nanosci Nanotechnol 16:5592–7.
  • Li W, Zhang Z, Gordon AC, et al. (2016c). SPIO-labeled yttrium microspheres for MR imaging quantification of transcatheter intrahepatic delivery in a rodent model. Radiology 278:405–12.
  • Lu C, Xu H, Xu J, et al. (2016). Multi-pass adaptive voting for nuclei detection in histopathological images. Sci Rep 6:33985.
  • Ma B, He L, You Y, et al. (2018). Controlled synthesis and size effects of multifunctional mesoporous silica nanosystem for precise cancer therapy. Drug Deliv 25:293–306.
  • Maeng JH, Lee DH, Jung KH, et al. (2010). Multifunctional doxorubicin loaded superparamagnetic iron oxide nanoparticles for chemotherapy and magnetic resonance imaging in liver cancer. Biomaterials 31:4995–5006.
  • Majd MH, Asgari D, Barar J, et al. (2013). Tamoxifen loaded folic acid armed PEGylated magnetic nanoparticles for targeted imaging and therapy of cancer. Colloids Surf B Biointerfaces 106:117–25.
  • Rajendran JG, Mankoff DA. (2007). A definition of molecular imaging. J Nucl Med 48:855.
  • Mcbain SC, Yiu HHP, Dobson J. (2008). Magnetic nanoparticles for gene and drug delivery. Int J Nanomed 3:169–80.
  • Nazir S, Hussain T, Ayub A, et al. (2014). Nanomaterials in combating cancer: therapeutic applications and developments. Nanomedicine 10:19–34.
  • Nogueira DR, Mitjans M, Infante MR, Vinardell MP. (2011). The role of counterions in the membrane-disruptive properties of pH-sensitive lysine-based surfactants. Acta Biomater 7:2846–56.
  • Olson ES, Jiang T, Aguilera TA, et al. (2010). Activatable cell penetrating peptides linked to nanoparticles as dual probes for in vivo fluorescence and MR imaging of proteases. Proc Natl Acad Sci USA 107:4311–16.
  • Pelicano H, Carney D, Huang P. (2004). ROS stress in cancer cells and therapeutic implications. Drug Resist Updat 7:97–110.
  • Piali L, Hammel P, Uherek C, et al. (1995). CD31/PECAM-1 is a ligand for alpha v beta 3 integrin involved in adhesion of leukocytes to endothelium. J Cell Biol 130:451–60.
  • Rossi A, Chiodini P, Sun J-M, et al. (2014). Six versus fewer planned cycles of first-line platinum-based chemotherapy for non-small-cell lung cancer: a systematic review and meta-analysis of individual patient data. Lancet Oncol 15:1254–62.
  • Service RF. (2003). American Chemical Society meeting. Nanomaterials show signs of toxicity. Science 300:243.
  • Sherry AD, Woods M. (2008). Chemical exchange saturation transfer contrast agents for magnetic resonance imaging. Annu Rev Biomed Eng 10:391–411.
  • Tong S, Hou S, Zheng Z, et al. (2010). Coating optimization of superparamagnetic iron oxide nanoparticles for high T2 relaxivity. Nano Lett 10:4607–13.
  • Veeravagu A, Liu Z, Niu G, et al. (2008). Integrin alpha(v)beta(3)-targeted radioimmunotherapy of glioblastoma multiforme. Clin Cancer Res 14:7330–9.
  • Wang D-W, Zhu X-M, Lee S-F, et al. (2013). Folate-conjugated Fe3O4@SiO2@gold nanorods@ mesoporous SiO2 hybrid nanomaterial: a theranostic agent for magnetic resonance imaging and photothermal therapy. J Mater Chem B 1:2934–42.
  • Wang LA, Neoh KG, Kang ET, Shuter B. (2011). Multifunctional polyglycerol-grafted Fe3O4@SiO2 nanoparticles for targeting ovarian cancer cells. Biomaterials 32:2166–73.
  • Wang SW, Konorev EA, Kotamraju S, et al. (2004). Doxorubicin induces apoptosis in normal and tumor cells via distinctly different mechanisms – intermediacy of H2O2- and p53-dependent pathways. J Biol Chem 279:25535–43.
  • Wood JC, Enriquez C, Ghugre N, et al. (2005). MRI R2 and R2* mapping accurately estimates hepatic iron concentration in transfusion-dependent thalassemia and sickle cell disease patients. Blood 106:1460–5.
  • Xia HM, Gu GZ, Hu QY, et al. (2013). Activatable cell penetrating peptide-conjugated nanoparticles with enhanced permeability for site-specific targeting delivery of anticancer drug. Bioconjug Chem 24:419–30.
  • Yang X, Hong H, Grailer JJ, et al. (2011). cRGD-functionalized, DOX-conjugated, and Cu-64-labeled superparamagnetic iron oxide nanoparticles for targeted anticancer drug delivery and PET/MR imaging. Biomaterials 32:4151–60.
  • Zanganeh S, Hutter G, Spitler R, et al. (2016). Iron oxide nanoparticles inhibit tumor growth by inducing pro-inflammatory macrophage polarization in tumor tissues. Nature Nanotech 11:986–94.
  • Zeng L, Chen J, Ji S, et al. (2015). Construction of a cancer-targeted nanosystem as a payload of iron complexes to reverse cancer multidrug resistance. J Mater Chem B 3:4345–54.
  • Zhu L, Zhu L, Shi H, et al. (2016). Evaluating early response of cervical cancer under concurrent chemo-radiotherapy by intravoxel incoherent motion MR imaging. BMC Cancer 16:79.