1,996
Views
41
CrossRef citations to date
0
Altmetric
Research Article

Stacking of doxorubicin on folic acid-targeted multiwalled carbon nanotubes for in vivo chemotherapy of tumors

, , , , , & show all
Pages 1607-1616 | Received 06 Jun 2018, Accepted 12 Jul 2018, Published online: 22 Oct 2018

References

  • Assa F, Jafarizadeh-Malmiri H, Ajamein H, et al. (2017). Chitosan magnetic nanoparticles for drug delivery systems. Crit Rev Biotechnol 37:492.
  • Bhirde AA, Patel V, Gavard J, et al. (2009). Targeted killing of cancer cells in vivo and in vitro with EGF-directed carbon nanotube-based drug delivery. ACS Nano 3:307–16.
  • Cao X, Tao L, Wen S, et al. (2015). Hyaluronic acid-modified multiwalled carbon nanotubes for targeted delivery of doxorubicin into cancer cells. Carbohydr Res 405:70–7.
  • Chłopek J, Czajkowska B, Szaraniec B, et al. (2006). In vitro studies of carbon nanotubes biocompatibility. Carbon 44:1106–11.
  • Du C, Zhao J, Fei J, et al. (2013). Assembled microcapsules by doxorubicin and polysaccharide as high effective anticancer drug carriers. Adv Healthc Mater 2:1246.
  • Feazell RP, Nakayama-Ratchford N, Dai H, Lippard SJ. (2007). Soluble single-walled carbon nanotubes as longboat delivery systems for platinum(IV) anticancer drug design. J Am Chem Soc 129:8438–9.
  • Hai W, Agarwal P, Zhao S, et al. (2015). A biomimetic hybrid nanoplatform for encapsulation and precisely controlled delivery of theranostic agents. Nat Commun 6:10081.
  • Hersam MC. (2008). Progress towards monodisperse single-walled carbon nanotubes. Nature Nanotech 3:387–94.
  • Hu Y, Wang R, Wang S, et al. (2016). Multifunctional Fe3O4 @ Au core/shell nanostars: a unique platform for multimode imaging and photothermal therapy of tumors. Sci Rep 6:28325.
  • Hu Y, Yang J, Wei P, et al. (2015). Facile synthesis of hyaluronic acid-modified Fe3O4/Au composite nanoparticles for targeted dual mode MR/CT imaging of tumors. J Mater Chem B 3:9098–108.
  • Huang P, Xu C, Lin J, et al. (2011). Folic acid-conjugated graphene oxide loaded with photosensitizers for targeting photodynamic therapy. Theranostics 1:240–50.
  • Kesharwani P, Jain K, Jain NK. (2014). Dendrimer as nanocarrier for drug delivery. Prog Polym Sci 39:268–307.
  • Lacerda L, Bianco A, Prato M, Kostarelos K. (2006). Carbon nanotubes as nanomedicines: from toxicology to pharmacology. Adv Drug Deliv Rev 58:1460–70.
  • Li J, Hu Y, Yang J, et al. (2015). Facile synthesis of folic acid-functionalized iron oxide nanoparticles with ultrahigh relaxivity for targeted tumor MR imaging. J Mater Chem B 3:5720–30.
  • Li J, Zheng L, Cai H, et al. (2013). Polyethyleneimine-mediated synthesis of folic acid-targeted iron oxide nanoparticles for in vivo tumor MR imaging. Biomaterials 34:8382–92.
  • Liu H, Wang H, Xu Y, et al. (2014). Synthesis of PEGylated low generation dendrimer-entrapped gold nanoparticles for CT imaging applications. Nanoscale 6:4521–6.
  • Liu W, Wen S, Shen M, Shi X. (2014). Doxorubicin-loaded poly(lactic-co-glycolic acid) hollow microcapsules for targeted drug delivery to cancer cells. New J Chem 38:3917–24.
  • Liu Z, Cai W, He L, et al. (2007). In vivo biodistribution and highly efficient tumour targeting of carbon nanotubes in mice. Nat Nanotechnol 2:47–52.
  • Liu Z, Fan AC, Rakhra K, et al. (2009). Supramolecular stacking of doxorubicin on carbon nanotubes for in vivo cancer therapy. Angew Chem Int Ed Engl 48:7668–72.
  • Liu Z, Sun X, Nakayama-Ratchford N, Dai H. (2007). Supramolecular chemistry on water-soluble carbon nanotubes for drug loading and delivery. ACS Nano 1:50–6.
  • Low PS, Henne WA, Doorneweerd DD. (2008). Discovery and development of folic-acid-based receptor targeting for imaging and therapy of cancer and inflammatory diseases. Acc Chem Res 41:120–9.
  • Movassaghian S, Merkel OM, Torchilin VP. (2015). Applications of polymer micelles for imaging and drug delivery. Wires Nanomed Nanobiotechnol 7:691.
  • Petersen EJ, Huang Q, Weber J, Walter J. (2008a). Bioaccumulation of radio-labeled carbon nanotubes by Eisenia foetida. Environ Sci Technol 42:3090–5.
  • Petersen EJ, Huang Q, Weber WJ. Jr. (2008b). Ecological uptake and depuration of carbon nanotubes by Lumbriculus variegatus. Environ Health Perspect 116:496.
  • Prato M, Kostarelos K, Bianco A. (2008). Functionalized carbon nanotubes in drug design and discovery. Acc Chem Res 41:60–8.
  • Qu Q, Ma X, Zhao Y. (2015). Targeted delivery of doxorubicin to mitochondria using mesoporous silica nanoparticle nanocarriers. Nanoscale 7:16677.
  • Shen M, Wang SH, Shi X, et al. (2009). Polyethyleneimine-mediated functionalization of multiwalled carbon nanotubes: synthesis, characterization, and in vitro toxicity assay. J Phys Chem C 113:3150–6.
  • Shi Kam NW, Jessop TC, Wender PA, Dai H. (2004). Nanotube molecular transporters: internalization of carbon nanotube-protein conjugates into mammalian cells. J Am Chem Soc 126:6850–1.
  • Shi X, Wang SH, Shen M, et al. (2009). Multifunctional dendrimer-modified multiwalled carbon nanotubes: synthesis, characterization, and in vitro cancer cell targeting and imaging. Biomacromolecules 10:1744–50.
  • Sun C, Sze R, Zhang M. (2006). Folic acid-PEG conjugated superparamagnetic nanoparticles for targeted cellular uptake and detection by MRI. J Biomed Mater Res 78A:550–7.
  • Tahover E, Patil YP, Gabizon AA. (2015). Emerging delivery systems to reduce doxorubicin cardiotoxicity and improve therapeutic index: focus on liposomes. Anticancer Drugs 26:241.
  • Wang S, Wu Y, Guo R, et al. (2013). Laponite nanodisks as an efficient platform for doxorubicin delivery to cancer cells. Langmuir 29:5030–6.
  • Wang Y, Cao X, Guo R, et al. (2011). Targeted delivery of doxorubicin into cancer cells using a folic acid–dendrimer conjugate. Polym Chem 2:1754–60.
  • Wen S, Liu H, Cai H, et al. (2013). Targeted and pH‐responsive delivery of doxorubicin to cancer cells using multifunctional dendrimer‐modified multi‐walled carbon nanotubes. Adv Healthcare Mater 2:1267–76.
  • Zerda A, Bodapati S, Teed R, et al. (2012). Family of enhanced photoacoustic imaging agents for high-sensitivity and multiplexing studies in living mice. ACS Nano 6:4694–701.
  • Zhu J, Zheng L, Wen S, et al. (2014). Targeted cancer theranostics using alpha-tocopheryl succinate-conjugated multifunctional dendrimer-entrapped gold nanoparticles. Biomaterials 35:7635–46.