4,067
Views
45
CrossRef citations to date
0
Altmetric
Review

Versatility of cell-penetrating peptides for intracellular delivery of siRNA

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 1996-2006 | Received 12 Aug 2018, Accepted 29 Oct 2018, Published online: 31 Dec 2018

References

  • Aldrian G, Vaissière A, Konate K, et al. (2017). PEGylation rate influences peptide-based nanoparticles mediated siRNA delivery in vitro and in vivo. J Control Release 256:79–91.
  • Avci FG, Akbulut SG, Ozkirimli E. (2018). Membrane active peptides and their biophysical characterization. Biomolecules 8:77–43.
  • Bechara C, Pallerla M, Zaltsman Y, et al. (2013). Tryptophan within basic peptide sequences triggers glycosaminoglycan-dependent endocytosis. Faseb J 27:738–49.
  • Ben Djemaa S, David S, Hervé-Aubert K, et al. (2018). Formulation and in vitro evaluation of a siRNA delivery nanosystem decorated with gH625 peptide for triple negative breast cancer theranosis. Eur J Pharma Biopharm 131:99–108.
  • Berg AVD, Dowdy SF. (2011). Protein transduction domain delivery of therapeutic macromolecules. Curr Opin Biotech 22:888–93.
  • Bolhassani A, Jafarzade BS, Mardani G. (2017). In vitro and in vivo delivery of therapeutic proteins using cell penetrating peptides. Peptides 87:50–63.
  • Cardoso AMS, Trabulo S, Cardoso AL, et al. (2012). S4(13)-PV cell-penetrating peptide induces physical and morphological changes in membrane-mimetic lipid systems and cell membranes: Implications for cell internalization. BBA Biomembr 1818:877–88.
  • Choi YS, David AE. (2014). Cell penetrating peptides and the mechanisms for intracellular entry. Curr Pharm Biotechnol 15:192–9.
  • Daniels DS, Schepartz A. (2007). Intrinsically cell-permeable miniature proteins based on a minimal cationic PPII motif. J Am Chem Soc 129:14578–9.
  • Derossi D, Joliot AH, Chassaing G, et al. (1994). The third helix of the antennapedia homeodomain translocates through biological membranes. J Biol Chem 269:10444–50.
  • Deshayes S, Morris M, Heitz F, et al. (2008). Delivery of proteins and nucleic acids using a non-covalent peptide-based strategy. Adv Drug Deliv Rev 60:537–47.
  • Elmquist A, Lindgren M, Bartfai T, et al. (2001). Ve-cadherin-derived cell-penetrating peptide, pVEC with carrier functions. Exp Cell Res 269:237–44.
  • El-Sayed A, Masuda T, Khalil I, et al. (2009). Enhanced gene expression by a novel stearylated INF7 peptide derivative through fusion independent endosomal escape. J Control Release 138:160–7.
  • Falanga A, Lombardi L, Tarallo R, et al. (2017). The intriguing journey of gH625-dendrimers. RSC Adv 7:9106–14.
  • Falanga A, Galdiero M, Galdiero S. (2015). Membranotropic cell penetrating peptides: The outstanding journey. Int J Mol Sci 16: 25323–37.
  • Falanga A, Galdiero M, Morelli G, et al. (2018). Membranotropic peptides mediating viral entry. J Pept Sci doi.org/10.1002/pep2.24040.
  • Falanga A, Iachetta G, Lombardi L, et al. (2018). Enhanced uptake of gH625 by blood brain barrier compared to liver in vivo: characterization of the mechanism by an in vitro model and implications for delivery. Sci Rep 8:1–13.doi:10.1038/s41598-018-32095-w.
  • Falanga A, Valiante S, Galdiero E, et al. (2017). Dimerization in tailoring uptake efficacy of the HSV-1 derived membranotropic peptide gH625. Sci Rep 7:1–20.
  • Fanghänel S, Wadhwani P, Strandberg E, et al. (2014). Structure analysis and conformational transitions of the cell penetrating peptide transportan 10 in the membrane-bound state. PLoS ONE 9:1–14.
  • Foged C, Nielsen H. (2008). Cell-penetrating peptides for drug delivery across membrane barriers. Expert Opin Drug Deliv 5:105–17.
  • Fretz MM, Penning NA, Al-Taei S, et al. (2007). Temperature-, concentration- and cholesterol-dependent translocation of L- and D-octa-arginine across the plasma and nuclear membrane of CD34+ leukaemia cells. Biochem J 403:335–42.
  • Futaki S, Suzuki T, Ohashi W, et al. (2001). Arginine-rich peptides. An abundant source of membrane-permeable peptides having potential as carriers for intracellular protein delivery. J Biol Chem 276:5836–40.
  • Galdiero S, Falanga A, Morelli G, et al. (2015). GH625: A milestone in understanding the many roles of membranotropic peptides. Biochim Biophys Acta 1848:16–25.
  • Gao C, Mao S, Ditzel HJ, et al. (2002). A cell-penetrating peptide from a novel pVII-pIX phage-displayed random peptide library. Bioorg Med Chem 10:4057–65.
  • Gooding M, Browne LP, Quinteiro FM, et al. (2012). siRNA delivery: from lipids to cell-penetrating peptides and their mimics. Chem Biol Drug Des 80:787–9.
  • Gros E, Deshayes S, Morris MC, et al. (2006). A non-covalent peptide-based strategy for protein and peptide nucleic acid transduction. Biochim Biophys Acta 1758:384–93.
  • Guidotti G, Brambilla L, Rossi D. (2017). Cell-penetrating peptides : from basic research to Clinics. Trends Pharmacol Sci 38:406–24.
  • Guo Z, Peng H, Kang J, et al. (2016). Cell-penetrating peptides : possible transduction mechanisms and therapeutic applications. Biomed Rep 4:528–34.
  • Heitz F, Morris MC, Divita G. (2009). Twenty years of cell-penetrating peptides: from molecular mechanisms to therapeutics. Br J Pharmacol 157:195–206.
  • Hirose H, Takeuchi T, Osakada H, et al. (2012). Transient focal membrane deformation induced by arginine-rich peptides leads to their direct penetration into cells. Mol Ther 20:984–93.
  • Hsu T, Mitragotri S. (2011). Delivery of siRNA and other macromolecules into skin and cells using a peptide enhancer. Proc Natl Acad Sci USA 108:15816–21.
  • Huang YW, Lee HJ, Tolliver LM, et al. (2015). Delivery of nucleic acids and nanomaterials by cell-penetrating peptides: opportunities and challenges. Biomed Res Int 2015: (2015). 1–16.
  • Hyun S, Choi Y, Lee HN, et al. (2018). Construction of histidine-containing hydrocarbon stapled cell penetrating peptides for in vitro and in vivo delivery of siRNAs. Chem Sci 9:3820–7.
  • Jafari S, Dizaj SM, Adibkia K. (2015). Cell-penetrating peptides and their analogues as novel nanocarriers for drug delivery. Bioimpacts 5:103–11.
  • Joanne P, Nicolas P, El Amri C. (2009). Antimicrobial peptides and viral fusion peptides: how different they are? Protein Pept Lett 16:743–50.
  • Jobin ML, Blanchet M, Henry S, et al. (2015). The role of tryptophans on the cellular uptake and membrane interaction of arginine-rich cell penetrating peptides. Biochim Biophys Acta 1848:593–2.
  • Joliot A, Pernelle C, Deagostini-Bazin H, et al. (1991). Antennapedia homeobox peptide regulates neural morphogenesis. Proc Natl Acad Sci USA 88:1864–8.
  • Kawamoto S, Takasu M, Miyakawa T, et al. (2011). Inverted micelle formation of cell-penetrating peptide studied by coarse-grained simulation: Importance of attractive force between cell-penetrating peptides and lipid head group. J Chem Phys 134:095301–6.
  • Kole R, Krainer AR, Altman S. (2012). RNA therapeutics: beyond RNA interference and antisense oligonucleotides. Nat Rev Drug Discov 11:125–40.
  • Konate K, Crombez L, Deshayes S, et al. (2010). Insight into the cellular uptake mechanism of a secondary amphipathic cell-penetrating peptide for siRNA delivery. Biochemistry 49:3393–402.
  • Koren E, Torchilin VP. (2012). Cell-penetrating peptides : breaking through to the other side. Trends Mol Med 18:385–93.
  • Kosuge M, Takeuchi T, Nakase I, et al. (2008). Cellular internalization and distribution of arginine-rich peptides as a function of extracellular peptide concentration, serum, and plasma membrane associated proteoglycans. Bioconjugate Chem 19:656–64.
  • Kumar P, Kizhakkedathu JN, Straus SK. (2018). Antimicrobial peptides: diversity, mechanism of action and strategies to improve the activity and biocompatibility in vivo. Biomolecules 8:1–24. doi:10.3390/biom8010004.
  • Langel Ü. (2006). Handbook of cell-penetrating peptides. 2nd ed. Boca Raton: CRC press.
  • Layek B, Lipp L, Singh J. (2015). Cell penetrating peptide conjugated chitosan for enhanced delivery of nucleic acid. Int J Mol Sci 16:28912–30.
  • LeCher JC, Nowak SJ, McMurry JL. (2017). Breaking in and busting out: cell-penetrating peptides and the endosomal escape problem. Biomol Concepts 8:131–41.
  • Lee YW, Hwang YE, Lee JY, et al. (2018). VEGF siRNA delivery by a cancer-specific cell-penetrating peptide. J Microbiol Biotechnol 28:367–74.
  • Lehto T, Ezzat K, Wood MJA, et al. (2016). Peptides for nucleic acid delivery. Adv Drug Deliv Rev 106:172–82.
  • Lehto T, Kurrikoff K, Langel Ü. (2012). Cell-penetrating peptides for the delivery of nucleic acids. Expert Opin Drug Deliv 9:823–36.
  • Li Y, Li Y, Wang X, et al. (2015). Fatty acid modified octa-arginine for delivery of siRNA. Int J Pharm 495:527–35.
  • Lim JP, Gleeson PA. (2011). Macropinocytosis: an endocytic pathway for internalising large gulps. Immunol Cell Biol 89:836–43.
  • Lundberg P, El-Andaloussi S, Sutlu T, et al. (2007). Delivery of short interfering RNA using endosomolytic cell-penetrating peptides. Faseb J 21:2664–71.
  • Madani F, Lindberg S, Langel Ü, et al. (2011). Mechanisms of cellular uptake of cell-penetrating peptides. J Biophys 2011:1–10.
  • Maeda H. (2010). Tumor-selective delivery of macromolecular drugs via the EPR effect: background and future prospects. Bioconjug Chem 21:797–802.
  • Margus H, Arukuusk P, Langel Ü, et al. (2016). Characteristics of cell-penetrating peptide/nucleic acid nanoparticles. Mol Pharm 13:172–9.
  • Marks JR, Placone J, Hristova K, et al. (2011). Spontaneous membrane-translocating peptides by orthogonal high-throughput screening. J Am Chem Soc 133:8995–4.
  • Mayor S, Parton RG, Donaldson JG. (2014). Clathrin-Independent pathways of endocytosis clathrin-independent pathways of endocytosis. CSH Perspect Biol 6:1–20.
  • Messa M, Fernández-Busnadiego R, Sun EW, et al. (2014). Epsin deficiency impairs endocytosis by stalling the actin-dependent invagination of endocytic clathrin-coated pits. eLife 3:1–25. doi: 10.7554/eLife.03311.
  • Milletti F. (2012). Cell-penetrating peptides : classes, origin, and current landscape. Drug Discov Today 17:850–60.
  • Morris MC, Deshayes S, Heitz F, et al. (2008). Cell-penetrating peptides: from molecular mechanisms to therapeutics. Biol Cell 100:201–17.
  • Mueller J, Kretzschmar I, Volkmer R, et al. (2008). Comparison of cellular uptake using 22 CPPs in 4 different cell lines. Bioconjug Chem 19:2363–74.
  • Nakase I, Akita H, Kogure K, et al. (2012). Efficient intracellular delivery of nucleic acid pharmaceuticals using cell-penetrating peptides. Acc Chem Res 45:1132–9.
  • Nakase I, Tanaka G, Futaki S. (2013). Cell-penetrating peptides (CPPs) as a vector for the delivery of siRNAs into cells. Mol Biosyst 9:855–61.
  • Oehlke J, Krause E, Wiesner B, et al. (1997). Extensive cellular uptake into endothelial cells of an amphipathic beta-sheet forming peptide. FEBS Lett 415:196–9.
  • Palm-Apergi C, Lönn P, Dowdy SF. (2012). Do cell-penetrating peptides actually "penetrate" cellular membranes? Mol Ther 20:695–7.
  • Park J, Ryu J, Kim KA, et al. (2002). Mutational analysis of a human immunodeficiency virus type 1 Tat protein transduction domain which is required for delivery of an exogenous protein into mammalian cells. J Gen Virol 83:1173–81.
  • Pärnaste L, Arukuusk P, Langel K, et al. (2017). The formation of nanoparticles between small interfering RNA and amphipathic cell-penetrating peptides. Mol Ther Nucl Acids 7:1–10.
  • Peng J, Rao Y, Yang X, et al. (2017). Targeting neuronal nitric oxide synthase by a cell penetrating peptide Tat-LK15/siRNA bioconjugate. Neurosci Lett 650:153–60.
  • Perillo E, Hervé-Aubert K, Allard-Vannier E, et al. (2017). Synthesis and in vitro evaluation of fluorescent and magnetic nanoparticles functionalized with a cell penetrating peptide for cancer theranosis. J Colloid Interf Sci 499:209–17.
  • Pooga M, Hällbrink M, Zorko M, et al. (1998). Cell penetration by transportan. Faseb J 12:67–77.
  • Pooga M, Soomets U, Hällbrink M, et al. (1998). Cell penetrating PNA constructs regulate galanin receptor levels and modify pain transmission in vivo. Nat Biotechnol 16:857–61.
  • Pujals S, Fernández-Carneado J, López-Iglesias C, et al. (2006). Mechanistic aspects of CPP-mediated intracellular drug delivery: relevance of CPP self-assembly. Biochim Biophys Acta 1758:264–79.
  • Pujals S, Giralt E. (2008). Proline-rich, amphipathic cell-penetrating peptides. Adv Drug Deliv Rev 60:473–84.
  • Ragin AD, Morgan RA, Chmielewski J. (2002). Cellular import mediated by nuclear localization signal peptide sequences. Chem Biol 9:943–8.
  • Regberg J, Srimanee A, Langel Ü. (2012). Applications of cell-penetrating peptides for tumor targeting and future cancer therapies. Pharmaceuticals (Basel) 5:991–7.
  • Reischl D, Zimmer A. (2009). Drug delivery of siRNA therapeutics: potentials and limits of nanosystems. Nanomedicine 5:8–20.
  • Rhee M, Davis P. (2006). Mechanism of uptake of C105Y, a novel cell-penetrating peptide. J Biol Chem 281:1233–40.
  • Roy CL, Wrana JL. (2005). Clathrin- and non-clathrin-mediated endocytic regulation of cell signalling . Nat Rev Mol Cell Biol 6:112–26.
  • Saar K, Lindgren M, Hansen M, et al. (2005). Cell-penetrating peptides: a comparative membrane toxicity study. Anal Biochem 345:55–6.
  • Sadler K, Eom KD, Yang JL, et al. (2002). Translocating proline-rich peptides from the antimicrobial peptide bactenecin 7. Biochemistry 41:14150–7.
  • Sauvonnet N, Dujeancourt A, Dautry-Varsat A. (2005). Cortactin and dynamin are required for the clathrin-independent endocytosis of gammac cytokine receptor. J Cell Biol 168:155–63.
  • Sawant R, Torchilin V. (2010). Intracellular transduction using cell-penetrating peptides. Mol BioSyst 6:628–40.
  • Schafer D. (2002). Coupling actin dynamics and membrane dynamics during endocytosis. Curr Opin Cell Biol 14:76–81.
  • Simeoni F, Morris MC, Heitz F, et al. (2003). Insight into the mechanism of the peptide-based gene delivery system MPG: Implications for delivery of siRNA into mammalian cells. Nucleic Acids Res 31:2717–24.
  • Smaldone G, Falanga A, Capasso D, et al. (2013). gH625 is a viral derived peptide for effective delivery of intrinsically disordered proteins. Int J Nanomed 8:2555–65.
  • Stewart KM, Horton KL, Kelley SO. (2008). Cell-penetrating peptides as delivery vehicles for biology and medicine. Org Biomol Chem 6:2242–55.
  • Sugita T, Yoshikawa T, Mukai Y, et al. (2007). Improved cytosolic translocation and tumor-killing activity of Tat-shepherdin conjugates mediated by co-treatment with Tat-fused endosome-disruptive HA2 peptide. Biochem Bioph Res Co 363:1027–32.
  • Tai Z, Wang X, Tian J, et al. (2015). Biodegradable stearylated peptide with internal disulfide bonds for efficient delivery of siRNA in vitro and in vivo. Biomacromolecules 16:1119–30.
  • Takeuchi T, Futaki S. (2016). Current understanding of direct translocation of arginine-rich cell-penetrating peptides and its internalization mechanisms. Chem Pharm Bull 64:1431–7.
  • Triantafilou M, Miyake K, Golenbock DT, et al. (2002). Mediators of innate immune recognition of bacteria concentrate in lipid rafts and facilitate lipopolysaccharide-induced cell activation. J Cell Sci 115:2603–11.
  • Tudisco C, Cambria MT, Giuffrida AE, et al. (2018). Comparison between folic acid and gH625 peptide-based functionalization of Fe3O4 magnetic nanoparticles for enhanced cell internalization. Nanoscale Res Lett 13:1–10. doi: 10.1186/s11671-018-2459-8.
  • Tunnemann G. (2006). Cargo-dependent mode of uptake and bioavailability of TAT-containing proteins and peptides in living cells. Faseb J 20:1775–84.
  • Ullah I, Chung K, Beloor J, et al. (2017). Trileucine residues in a ligand-CPP-based siRNA delivery platform improve endosomal escape of siRNA. J Drug Target 25:320–9.
  • Vaissière A, Aldrian G, Konate K, et al. (2017). A retro-inverso cell-penetrating peptide for siRNA delivery. J Nanobiotechnol 15:1–18.
  • Van Asbeck AH, Beyerle A, McNeill H, et al. (2013). Molecular parameters of siRNA-cell penetrating peptide nanocomplexes for efficient cellular delivery. ACS Nano 7:3797–807.
  • Vasconcelos L, Pärn K, Langel Ü. (2013). Therapeutic potential of cell-penetrating peptides. Ther Deliv 4:573–91.
  • Veiman KL, Mäger I, Ezzat K, et al. (2013). PepFect14 peptide vector for efficient gene delivery in cell cultures. Mol Pharm 10:199–10.
  • Vivès. E, Brodin P, Lebleu B. (1997). A Truncated HIV-1 Tat protein basic domain rapidly translocates through the plasma membrane and accumulates in the cell nucleus. J Biol Chem 272:16010–17.
  • Wang J, Lu Z, Wientjes M, et al. (2010). Delivery of siRNA therapeutics: barriers and carriers. Aaps J 12:492–3.
  • Wender PA, Mitchell DJ, Pattabiraman K, et al. (2000). The design, synthesis, and evaluation of molecules that enable or enhance cellular uptake: peptoid molecular transporters. Proc Natl Acad Sci USA 97:13003–8.
  • Xiang B, Jia XL, Qi JL, et al. (2017). Enhancing siRNA-based cancer therapy using a new pH-responsive activatable cell-penetrating peptide-modified liposomal system. IJN Volume 12:2385–5.
  • Xu C, Wang J. (2015). Delivery systems for siRNA drug development in cancer therapy. AJPS 10:1–12.
  • Ye J, Liu E, Gong J, et al. (2017). High-yield synthesis of monomeric LMWP(CPP)-siRNA covalent conjugate for effective cytosolic delivery of siRNA. Theranostics 7:2495–8.
  • Ye J, Pei X, Cui H, et al. (2018). Cellular uptake mechanism and comparative in vitro cytotoxicity studies of monomeric LMWP-siRNA conjugate. J Ind Eng Chem 63:103–11.
  • Ye H. (2018). Molecular design of antimicrobial peptides based on hemagglutinin fusion domain to combat antibiotic resistance in bacterial infection. J Pept Sci 24:1–9.
  • Zaro JL, Shen WC. (2015). Cationic and amphipathic cell-penetrating peptides (CPPs): their structures and in vivo studies in drug delivery. Front Chem Sci Eng 9:407–27.