4,328
Views
37
CrossRef citations to date
0
Altmetric
Research Article

Improved drug targeting to liver tumor by sorafenib-loaded folate-decorated bovine serum albumin nanoparticles

, , , , , , , & ORCID Icon show all
Pages 89-97 | Received 06 Nov 2018, Accepted 17 Dec 2018, Published online: 11 Feb 2019

References

  • Abdel-Rahman O, Elsayed ZA. (2013). Combination Trans Arterial Chemoembolization (TACE) plus sorafenib for the management of unresectable hepatocellular carcinoma: a systematic review of the literature. Dig Dis Sci 58:3389–96.
  • Altintas I, Heukers R, van der Meel R, et al. (2013). Nanobody-albumin nanoparticles (NANAPs) for the delivery of a multikinase inhibitor 17864 to EGFR overexpressing tumor cells. J Control Release 165:110–18.
  • Basu S, et al. (2012). Colloidal gold-loaded, biodegradable, polymer-based stavudine nanoparticle uptake by macrophages: an in vitro study. Int J Nanomedicine 7:6049–61.
  • Dreis S, Rothweiler F, Michaelis M, et al. (2007). Preparation, characterisation and maintenance of drug efficacy of doxorubicin-loaded human serum albumin (HSA) nanoparticles. Int J Pharm 341:207–14.
  • Dubey RD, Alam N, Saneja A, et al. (2015). Development and evaluation of folate functionalized albumin nanoparticles for targeted delivery of gemcitabine. Int J Pharm 492:80–91.
  • Hawkins MJ, Soon-Shiong P, Desai N, et al. (2008). Protein nanoparticles as drug carriers in clinical medicine. Adv Drug Deliv Rev 60:876–85.
  • Kim TH, Jiang HH, Youn YS, et al. (2011). Preparation and characterization of water-soluble albumin-bound curcumin nanoparticles with improved antitumor activity. Int J Pharm 403:285–91.
  • Kouchakzadeh H, Shojaosadati SA, Mohammadnejad J, et al. (2012). Attachment of an anti-MUC1 monoclonal antibody to 5-FU loaded BSA nanoparticles for active targeting of breast cancer cells. Hum Antibodies 21:49–56.
  • Kouchakzadeh H, Shojaosadati SA, Tahmasebi F, et al. (2013). Optimization of an anti-HER2 monoclonal antibody targeted delivery system using PEGylated human serum albumin nanoparticles. Int J Pharm 447:62–9.
  • Kudo M. (2012). Treatment of advanced hepatocellular carcinoma with emphasis on hepatic arterial infusion chemotherapy and molecular targeted therapy. Liver Cancer 1:62–70.
  • Li N, Zhao L, Qi L, et al. (2016). Polymer assembly: promising carriers as co-delivery systems for cancer therapy. Prog Polym Sci 58:1–26.
  • Li Y-J, Dong M, Kong F-M, et al. (2015). Folate-decorated anticancer drug and magnetic nanoparticles encapsulated polymeric carrier for liver cancer therapeutics. Int J Pharm 489:83–90.
  • Liu C, Chen Z, Chen Y, et al. (2016). Improving oral bioavailability of sorafenib by optimizing the "spring" and "parachute" based on molecular interaction mechanisms. Mol Pharmaceutics 13:599–608.
  • Lu Y, Low PS. (2002). Folate-mediated delivery of macromolecular anticancer therapeutic agents. Adv Drug Deliv Rev 54:675–93.
  • Miller AA, Murry DJ, Owzar K, et al. (2009). Phase I and pharmacokinetic study of sorafenib in patients with hepatic or renal dysfunction: CALGB 60301. J Clin Oncol 27:1800–5.
  • Minami H, Kawada K, Ebi H, et al. (2008). Phase I and pharmacokinetic study of sorafenib, an oral multikinase inhibitor, in Japanese patients with advanced refractory solid tumors. Cancer Sci 99:1492–8.
  • Pan X, Lee RJ. (2004). Tumour-selective drug delivery via folate receptor-targeted liposomes. Expert Opin Drug Deliv 1:7–17.
  • Ross JF, Chaudhuri PK, Ratnam M, et al. (1994). Differential regulation of folate receptor isoforms in normal and malignant tissues in vivo and in established cell lines. Physiologic and clinical implications. Cancer 73:2432–43.
  • Shimada M, Okawa H, Maejima T, et al. (2014). A quantitative HPLC-UV method for determination of serum sorafenib and sorafenib N-oxide and its application in hepatocarcinoma patients. Tohoku J Exp Med 233:103–12.
  • Steinhauser IM, Langer K, Strebhardt KM, et al. (2008). Effect of trastuzumab-modified antisense oligonucleotide-loaded human serum albumin nanoparticles prepared by heat denaturation. Biomaterials 29:4022–8.
  • Strumberg D. (2012). Sorafenib for the treatment of renal cancer. Expert Opin Pharmacother 13:407–19.
  • Strumberg D, Clark JW, Awada A, et al. (2007). Safety, pharmacokinetics, and preliminary antitumor activity of sorafenib: a review of four phase I trials in patients with advanced refractory solid tumors. Oncologist 12:426–37.
  • Sudimack J, Lee RJ. (2000). Targeted drug delivery via the folate receptor. Adv Drug Deliv Rev 41:147–62.
  • Ulbrich K, Hekmatara T, Herbert E, et al. (2009). Transferrin- and transferrin-receptor-antibody-modified nanoparticles enable drug delivery across the blood-brain barrier (BBB). Eur J Pharm Biopharm 71:251–6.
  • Wang H, Wang H, Yang W, et al. (2018). Improved oral bioavailability and liver targeting of sorafenib solid lipid nanoparticles in rats. AAPS PharmSciTech 19:761–8.
  • Wang X, Deng Y, Pang T, Cheng G. (2014). Determination of entrapment efficiency for Docetaxel-loaded folate-cojugated Chitosan nanoparticles. Modern Hospital 14:77–9.
  • Wang Z, Deng Y, Yue X, et al. (2015). Research progress of nano drug delivery system. Guangdong Med J 36:2254–7.
  • Weitman SD, Weinberg AG, Coney LR, et al. (1992). Cellular localization of the folate receptor: potential role in drug toxicity and folate homeostasis . Cancer Res 52:6708–11.
  • Zhang L, Gong F, Zhang F, et al. (2013). Targeted therapy for human hepatic carcinoma cells using folate-functionalized polymeric micelles loaded with superparamagnetic iron oxide and sorafenib in vitro. Int J Nanomedicine 8:1517–24.
  • Zhang L, Lu J, Jin Y, et al. (2014). Folate-conjugated beta-cyclodextrin-based polymeric micelles with enhanced doxorubicin antitumor efficacy. Colloids Surf B Biointerfaces 122:260–9.
  • Zhao J, Xia D, Liu Y, et al. (2015). Research progress of application of folic acid coupled albumin nanoparticles. Shandong Med J 55:97–100.
  • Zhao L, Li N, Wang K, et al. (2014). A review of polypeptide-based polymersomes. Biomaterials 35:1284–301.